Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Cell Biol ; 176: 125-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164534

RESUMO

Bardet-Biedl syndrome (BBS) is a rare genetic disease of the group of ciliopathies, a group of pathologies characterized mainly by defects in the structure and/or function of primary cilia. The main features of this ciliopathy are retinal dystrophy, obesity, polydactyly, urogenital and renal abnormalities, and cognitive impairment, commonly accompanied by various secondary features, making clear the extensive clinical heterogeneity associated with this syndrome, which, together with the frequent overlapping phenotype with other ciliopathies, greatly complicates its diagnosis. Patients are mainly detected by their pediatrician at quite early ages, usually between 2 and 6years. The pediatrician, given the main symptoms they present, usually refers patients to a specialist. Personalized medicine brought diagnosis closer to many patients who lacked it. It usually presents an autosomal recessive mode of inheritance, but in recent years several authors have proposed more complex inheritance models to explain the frequent inter- and intra-familial clinical variability. The main molecular techniques used for diagnosis are gene panels, the clinical exome and, in certain cases, the patient's complete genome. Although numerous studies have contributed to defining the role of the different BBS genes and designing various strategies for the molecular diagnosis of BBS, as well as delving into the functions performed by these proteins, these advances have not been sufficient to develop a complete treatment for this syndrome. and to be able to offer patients some therapeutic options.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Fenótipo , Proteínas/genética , Rim/patologia
2.
NPJ Genom Med ; 7(1): 41, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835773

RESUMO

Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy characterized by extensive inter- and intra-familial variability, in which oligogenic interactions have been also reported. Our main goal is to elucidate the role of mutational load in the clinical variability of BBS. A cohort of 99 patients from 77 different families with biallelic pathogenic variants in a BBS-associated gene was retrospectively recruited. Human Phenotype Ontology terms were used in the annotation of clinical symptoms. The mutational load in 39 BBS-related genes was studied in index cases using different molecular and next-generation sequencing (NGS) approaches. Candidate allele combinations were analysed using the in silico tools ORVAL and DiGePred. After clinical annotation, 76 out of the 99 cases a priori fulfilled established criteria for diagnosis of BBS or BBS-like. BBS1 alleles, found in 42% of families, were the most represented in our cohort. An increased mutational load was excluded in 41% of the index cases (22/54). Oligogenic inheritance was suspected in 52% of the screened families (23/45), being 40 tested by means of NGS data and 5 only by traditional methods. Together, ORVAL and DiGePred platforms predicted an oligogenic effect in 44% of the triallelic families (10/23). Intrafamilial variable severity could be clinically confirmed in six of the families. Our findings show that the presence of more than two alleles in BBS-associated genes correlated in six families with a more severe phenotype and associated with specific findings, highlighting the role of the mutational load in the management of BBS cases.

3.
Front Cardiovasc Med ; 9: 823133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282351

RESUMO

Pulmonary Arterial Hypertension (PAH) is a rare disease caused by the obliteration of the pulmonary arterioles, increasing pulmonary vascular resistance and eventually causing right heart failure. Endothelin-1 (EDN1) is a vasoconstrictor peptide whose levels are indicators of disease progression and its pathway is one of the most common targeted by current treatments. We sequenced the EDN1 untranslated regions of a small subset of patients with PAH, predicted the effect in silico, and used a luciferase assay with the different genotypes to analyze its influence on gene expression. Finally, we used siRNAs against the major transcription factors (TFs) predicted for these regions [peroxisome proliferator-activated receptor γ (PPARγ), Krüppel-Like Factor 4 (KLF4), and vitamin D receptor (VDR)] to assess EDN1 expression in cell culture and validate the binding sites. First, we detected a single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR; rs397751713) and another in the 3'regulatory region (rs2859338) that altered luciferase activity in vitro depending on their genotype. We determined in silico that KLF4/PPARγ could bind to the rs397751713 and VDR to rs2859338. By using siRNAs and luciferase assays, we determined that PPARγ binds differentially to rs397751713. PPARγ and VDR Knock-Down (KD) increased the EDN1 mRNA levels and EDN1 production in porcine aortic endothelial cells (PAECs), while PPARγ and KLF4 KD increased the EDN1 production in HeLa. In conclusion, common variants in EDN1 regulatory regions could alter EDN1 levels. We were able to validate that PPARγ binds in rs397751713 and is a key regulator of EDN1. In addition, KLF4 and VDR regulate EDN1 production in a cell-dependent manner, but VDR does not bind directly to the regions we studied.

4.
Genes (Basel) ; 12(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669459

RESUMO

Alström syndrome (ALMS) is an ultrarare disease with an estimated prevalence lower than 1 in 1,000,000. It is associated with disease-causing mutations in the Alström syndrome 1 (ALMS1) gene, which codifies for a structural protein of the basal body and centrosomes. The symptomatology involves nystagmus, type 2 diabetes mellitus (T2D), obesity, dilated cardiomyopathy (DCM), neurodegenerative disorders and multiorgan fibrosis. We refined the clinical and genetic diagnosis data of 12 patients from 11 families, all of them from Spain. We also studied the allelic frequency of the different variants present in this cohort and performed a haplotype analysis for the most prevalent allele. The genetic analysis revealed 2 novel homozygous variants located in the exon 8, p.(Glu929Ter) and p.(His1808GlufsTer20) in 2 unrelated patients. These 2 novel variants were classified as pathogenic after an in silico experiment (computer analysis). On the other hand, 2 alleles were detected at a high frequency in our cohort: p.(Tyr1714Ter) (25%) and p.(Ser3872TyrfsTer19) (16.7%). The segregation analysis showed that the pathogenic variant p.(Tyr1714Ter) in 3 families is linked to a rare missense polymorphism, p.(Asn1787Asp). In conclusion, 2 novel pathological mutations have been discovered in homozygosis, as well as a probable founder effect in 3 unrelated families.


Assuntos
Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/genética , Efeito Fundador , Obesidade/genética , Adulto , Síndrome de Alstrom/patologia , Feminino , Haplótipos/genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Obesidade/epidemiologia , Obesidade/patologia , Linhagem , Espanha/epidemiologia
5.
Front Cell Dev Biol ; 9: 623829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33598462

RESUMO

In this study, we aimed to evaluate the role of ALMS1 in the morphology of primary cilia and regulation of cellular signaling using a knockdown model of the hTERT-RPE1 cell line. ALMS1 depletion resulted in the formation of longer cilia, which often displayed altered morphology as evidenced by extensive twisting and bending of the axoneme. Transforming growth factor beta/bone morphogenetic protein (TGF-ß/BMP) signaling, which is regulated by primary cilia, was similarly affected by ALMS1 depletion as judged by reduced levels of TGFß-1-mediated activation of SMAD2/3. These results provide novel information on the role of ALMS1 in the function of primary cilia and processing of cellular signaling, which when aberrantly regulated may underlie Alström syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...