Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Commun Signal ; 13(3): 381-394, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30929166

RESUMO

The risk of renal cell carcinoma development is correlated with obesity and type II diabetes. Since insulin and insulin-like growth factors play a key role during development of both metabolic diseases, these molecules may be important in RCC pathophysiology We investigated the effect of insulin and IGFs on RCC cells using in vitro model with 786-O, 769-P, Caki-1, Caki-2, ACHN cancer cell lines. Cancer cells were compared with normal kidney cells - PCS-400-010 and HEK293. The growth, viability of cells as well as migration rate were assessed upon hormonal stimulation. The insulin receptor and Insulin-like growth factor 1 receptor presence were evaluated and the expression of 84 genes related to insulin signaling pathway. In all RCC cell lines IGF-1R expression was confirmed in contrast to IR, which was expressed only in control HEK293 cell line. Insulin and IGFs stimulated RCC cells growth and migration rate. Insulin, IGF-1 and IGF-2 triggered both IR and IGF-1R phosphorylation. Analyzed RCC did not secret insulin, IGF-1 or IGF-2 and were not activated in autocrine-paracrine signaling loop. Insulin and IGFs stimulations triggered down-regulation of PI3K-Akt-mTOR and Ras-MAPK pathway gens, as well as DOK2-3, INS, FRS3, IRS1-2, IGF1R - genes encoding insulin receptor-associated proteins. In conclusion, we showed that IGFs and insulin may play a stimulatory role for renal cancer cells, thus they can possibly affect renal cancer tumorigenesis and progression on cellular level.

2.
Cytotechnology ; 71(1): 149-163, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30599072

RESUMO

Novel experimental conditions of cancer cell line culture have evolved throughout the recent years, with significantly growing interest in xeno-free, serum-free and three-dimensional culture variants. The choice of proper culture media may enable to mimic tumor microenvironment and promotion of cancer stem cells proliferation. To assess whether stem-like phenotype inducing media may be applied in renal cancer stem cell research, we performed a widespread screening of 13 cell culture media dedicated for mesenchymal cells, stem cells as well as mesenchymal stem cells. We have also screened extracellular matrix compounds and selected optimal RCC 3D-ECM supported culture model. Our results revealed that 786-O as well as HKCSCs cell line cultures in xeno-free media (NutriStem/StemXvivo) and laminin coated plates provide a useful tool in RCC cancer biology research and at the same time enable effective drug toxicity screening. We propose bio-mimic 3D RCC cell culture model with specific low-serum and xeno-free media that promote RCC cell viability and stem-like phenotype according to the tested genes encoding stemness factors including E-cadherin, N-cadherin, HIF1, HIF2, VEGF, SOX2, PAX2 and NESTIN.

3.
Oncol Rep ; 35(3): 1433-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708631

RESUMO

This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Comunicação Celular/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Axitinibe , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Imidazóis/administração & dosagem , Indazóis/administração & dosagem , Indóis/administração & dosagem , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Oxigênio/metabolismo , Compostos de Fenilureia/administração & dosagem , Pirróis/administração & dosagem , Sorafenibe , Sunitinibe
4.
Int J Oncol ; 46(4): 1435-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25646857

RESUMO

The most important molecular mechanisms promoting carcinogenesis in patients with diabetes mellitus (DM) include oxidative stress, excessive generation of free radicals and nitrous oxide, damage to cellular membranes and DNA, overproduction of lactate, overabundance of protein glycosylation storage products, overexpression of pathological enzyme isoforms, and leakage of cytochromes from organelles. Additionally, dysfunctional signal transduction pathways, especially in pathways involving phosphoinositide 3­kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt, RAS/Raf/ERK, and mammalian target of rapamycin (mTOR), have been implicated in malignant transformation and progression. Obesity and metabolic disorders, such as DM, may contribute to a dysfunctional immune system with a suppressed immune response by inducing a chronic inflammatory state, abnormal humoral and cellular mediated immunity, and lower counts and activity levels of natural killer (NK) cells and natural killer T cells (NKT cells). Recent advances in molecular biology will allow for better understanding of abnormal cellular pathways, as well as elucidating how metabolic disorders contribute to oncogenesis. Knowledge gained through these studies may lead to more efficacious oncologic therapies.


Assuntos
Transformação Celular Neoplásica/metabolismo , Complicações do Diabetes/metabolismo , Transdução de Sinais , Animais , Glicemia/metabolismo , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Complicações do Diabetes/imunologia , Complicações do Diabetes/patologia , Feminino , Humanos , Masculino , Estresse Oxidativo
5.
Curr Signal Transduct Ther ; 8(3): 210-218, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152703

RESUMO

Mammalian target of rapamycin (mTOR) is a kinase protein involved in PI3K/AKT signaling with a central role in the processes of cell growth, survival and angiogenesis. Frequent mutations of this pathway make upstream and downstream components novel targets for tailored therapy design. Two mTOR inhibitors - everolimus and temsirolimus - enable an increase in overall survival (OS) or progression-free survival (PFS) time in a treatment of renal cancer. Despite recent advances in renal cancer treatment, resistance to targeted therapy is common. Understanding of molecular mechanisms is the basis of drug resistance which can facilitate prediction of success or failure in combinational or sequential targeted therapy. The article provides current knowledge on the mTOR signaling network and gives insight into the mechanisms of resistance to mTOR inhibitors from the complex perspective of RCC biology. The mechanisms of resistance developed not only by cancer cells, but also by interactions with tumor microenvironment are analyzed to emphasize the role of angiogenesis in ccRCC pathogenesis. As recent studies have shown the role of PI3K/AKT-mTOR pathway in proliferation and differentiation of cancer stem cells, we discuss cancer stem cell hypothesis and its possible contribution to ccRCC resistance. In the context of drug resistance, we also elaborate on a new approach considering ccRCC as a metabolic disease. In conclusion we speculate on future developments in agents targeting the mTOR pathway taking into consideration the singular biology of ccRCC.

6.
Curr Signal Transduct Ther ; 8(3): 218-228, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152704

RESUMO

Clear - cell renal cell carcinoma (ccRCC) is a histological subtype of renal cell carcinoma - the most prevalent adult kidney cancer. Causes of ccRCC are not completely understood and therefore number of available therapies is limited. As a consequence of tumor chemo- and radioresistance as well as restrictions in offered targeted therapies, overall response rate is still unsatisfactory. Moreover, a significant group of patients (circa 1/4) does not respond to the targeted first-line treatment, while in other cases, after an initial period of stable improvement, disease progression occurs. Owing to this, more data on resistance mechanisms are needed, especially those concerning widely used, relatively lately approved and more successful than previous therapies - tyrosine kinase inhibitors (TKIs). Up to date, five TKIs have been licensed for ccRCC treatment: sunitinib (SUTENT®, Pfizer Inc.), sorafenib (Nexavar®, Bayer HealthCare/Onyx Pharmaceuticals), pazopanib (Votrient®, GlaxoSmithKline), axitinib (Inlyta®, Pfitzer Inc.) and tivozanib (AV-951®, AVEO Pharmaceuticals). Researchers have specified different subsets of tyrosine kinase inhibitors potential resistance mechanisms in clear-cell renal cell carcinoma. In most papers published until now, drug resistance is divided into intrinsic and acquired, and typically multi-drug resistance (MDR) protein is described. Herein, the authors focus on molecular analysis concerning acquired, non-genetic resistance to TKIs, with insight into specific biological processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...