Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 30: 161-180, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37457303

RESUMO

Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.

2.
Genes (Basel) ; 14(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37372351

RESUMO

HSPA8 is involved in many stroke-associated cellular processes, playing a pivotal role in the protein quality control system. Here we report the results of the pilot study aimed at determining whether HSPA8 SNPs are linked to the risk of ischemic stroke (IS). DNA samples from 2139 Russians (888 IS patients and 1251 healthy controls) were genotyped for tagSNPs (rs1461496, rs10892958, and rs1136141) in the HSPA8 gene using probe-based PCR. SNP rs10892958 of HSPA8 was associated with an increased risk (risk allele G) of IS in smokers (OR = 1.37; 95% CI = 1.07-1.77; p = 0.01) and patients with low fruit and vegetable consumption (OR = 1.36; 95% CI = 1.14-1.63; p = 0.002). SNP rs1136141 of HSPA8 was also associated with an increased risk of IS (risk allele A) exclusively in smokers (OR = 1.68; 95% CI = 1.23-2.28; p = 0.0007) and in patients with a low fruit and vegetable intake (OR = 1.29; 95% CI = 1.05-1.60; p = 0.04). Sex-stratified analysis revealed an association of rs10892958 HSPA8 with an increased risk of IS in males (risk allele G; OR = 1.30; 95% CI = 1.05-1.61; p = 0.01). Thus, SNPs rs10892958 and rs1136141 in the HSPA8 gene represent novel genetic markers of IS.


Assuntos
Proteínas de Choque Térmico , AVC Isquêmico , Masculino , Humanos , Proteínas de Choque Térmico/genética , Projetos Piloto , Proteínas de Choque Térmico HSC70/genética , Genótipo
3.
IBRO Neurosci Rep ; 14: 453-461, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37252629

RESUMO

Background: Ischemic stroke (IS) is one of the most serious cardiovascular events associated with high risk of death or disability. The growing body of evidence highlights molecular chaperones as especially important players in the pathogenesis of the disease. Since six small proteins called "Hero" have been recently identified as a novel class of chaperones we aimed to evaluate whether SNP rs4644832 in SERF2 gene encoding the member of Hero-proteins, is associated with the risk of IS. Methods: A total of 1929 unrelated Russians (861 patients with IS and 1068 healthy individuals) from Central Russia were recruited into the study. Genotyping was done using a probe-based PCR approach. Statistical analysis was carried out in the whole group and stratified by age, gender and smoking status. Results: Analysis of the link between rs4644832 SERF2 and IS showed that G allele is the risk factor of IS only in females (OR=1.29, 95%CI 1.02-1.64, Padj=0.035). In addition, the analysis of associations of rs4644832 SERF2 and IS depending on the smoking status revealed that this genetic variant is associated with an increased risk of IS exclusively in non-smoking individuals (OR=1.26, 95%CI 1.01-1.56, P = 0.041). Discussion: Sex- and smoking interactions between rs4644832 polymorphism and IS may be related to the impact of tobacco components metabolism and sex hormones on SERF2 expression. Conclusion: The present study reveals the novel genetic association between rs4644832 polymorphism and the risk of IS suggesting that SERF2, the part of the protein quality control system, contributes to the pathogenesis of the disease.

5.
Mol Neurobiol ; 60(6): 3147-3157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802322

RESUMO

Alterations in function of hypoxanthine guanine phosphoribosyl transferase (HPRT), one of the major enzymes involved in purine nucleotide exchange, lead to overproduction of uric acid and produce various symptoms of Lesch-Nyhan syndrome (LNS). One of the hallmarks of LNS is maximal expression of HPRT in the central nervous system with the highest activity of this enzyme in the midbrain and basal ganglia. However, the nature of neurological symptoms has yet to be clarified in details. Here, we studied whether HPRT1 deficiency changes mitochondrial energy metabolism and redox balance in murine neurons from the cortex and midbrain. We found that HPRT1 deficiency inhibits complex I-dependent mitochondrial respiration resulting in increased levels of mitochondrial NADH, reduction of the mitochondrial membrane potential, and increased rate of reactive oxygen species (ROS) production in mitochondria and cytosol. However, increased ROS production did not induce oxidative stress and did not decrease the level of endogenous antioxidant glutathione (GSH). Thus, disruption of mitochondrial energy metabolism but not oxidative stress could play a role of potential trigger of brain pathology in LNS.


Assuntos
Síndrome de Lesch-Nyhan , Camundongos , Animais , Síndrome de Lesch-Nyhan/metabolismo , Síndrome de Lesch-Nyhan/patologia , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Espécies Reativas de Oxigênio , Encéfalo/metabolismo , Metabolismo Energético
6.
J Biophotonics ; 16(1): e202200222, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056822

RESUMO

We examined hematological changes influenced by the experimental hypervitaminosis A. The 3D confocal optical profilometer was applied for assessment of the erythrocytes' membrane structural changes influenced by an overdose of vitamin A. The blood smears were evaluated in terms of alterations of geometrical and optical parameters of erythrocytes for two groups of animals: oil base and retinol palmitate (n = 9 animals for each group). The results demonstrate that an overdose of retinol palmitate causes changes in the torus curvature and pallor of discocytes, their surface area and volume. The observed structural malformations of the shape of red blood cells become visible at the earlier preclinical stage of changes in animal state and behavior. With this in mind, the results of the study open a new area of research in the certain dysfunction diagnosis of red blood cells and have a great potential in the further development of new curative protocols.


Assuntos
Diterpenos , Membrana Eritrocítica , Animais , Eritrócitos , Ésteres de Retinil/análise
7.
J Transl Med ; 20(1): 562, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471396

RESUMO

Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terapia Genética , Padrões de Herança
8.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36376084

RESUMO

Mitochondrial dysfunction is one of the basic hallmarks of cellular pathology in neurodegenerative diseases. Since the metabolic activity of neurons is highly dependent on energy supply, nerve cells are especially vulnerable to impaired mitochondrial function. Besides providing oxidative phosphorylation, mitochondria are also involved in controlling levels of second messengers such as Ca2+ ions and reactive oxygen species (ROS). Interestingly, the critical role of mitochondria as producers of ROS is closely related to P2XR purinergic receptors, the activity of which is modulated by free radicals. Here, we review the relationships between the purinergic signaling system and affected mitochondrial function. Purinergic signaling regulates numerous vital biological processes in the CNS. The two main purines, ATP and adenosine, act as excitatory and inhibitory neurotransmitters, respectively. Current evidence suggests that purinergic signaling best explains how neuronal activity is related to neuronal electrical activity and energy homeostasis, especially in the development of Alzheimer's and Parkinson's diseases. In this review, we focus on the mechanisms underlying the involvement of the P2RX7 purinoreceptor in triggering mitochondrial dysfunction during the development of neurodegenerative disorders. We also summarize various avenues by which the purine signaling pathway may trigger metabolic dysfunction contributing to neuronal death and the inflammatory activation of glial cells. Finally, we discuss the potential role of the purinergic system in the search for new therapeutic approaches to treat neurodegenerative diseases.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Receptores Purinérgicos P2X7 , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais
9.
Biomark Insights ; 17: 11772719221095676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492378

RESUMO

Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1ß, TGF-ß, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-ß signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1ß, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-ß noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1ß, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-ß-binding protein (LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.

10.
FEBS J ; 289(16): 5021-5029, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35175687

RESUMO

Neurokinin-1 receptor (NK1r) antagonists have been shown to suppress operant self-administration of alcohol, voluntary alcohol consumption and stress-induced reinstatement of alcohol-seeking behaviour. Considering the long half-life and anxiolytic-like properties of NK1r antagonist rolapitant, we expected that it may be an effective option for reducing anxiety and alcohol motivation during early withdrawal. Voluntary alcohol intake (two-bottles paradigm) was recorded in male Wistar rats during the three periods: 24 days (basal level), 6-day period when rats received 5 mg·kg-1 rolapitant or vehicle and 12-h period after repeated withdrawal episodes (alcohol cessation for 36 h). We found that upon intraperitoneal (i.p.) administration, rolapitant rapidly penetrated into specific rat brain regions - amygdala, hypothalamus and neocortex - implicated in the control of anxiety and reward. Rolapitant did not affect basal voluntary alcohol intake, but significantly suppressed anxiety-like behaviour and alcohol consumption following withdrawal episodes. Our findings suggest that rolapitant should be further investigated as a novel treatment option for relapse prevention in alcohol-dependent patients.


Assuntos
Consumo de Bebidas Alcoólicas , Antagonistas dos Receptores de Neurocinina-1 , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Ansiedade/tratamento farmacológico , Etanol , Masculino , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Ratos , Ratos Wistar , Compostos de Espiro
11.
Sci Rep ; 12(1): 848, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039573

RESUMO

High expectations have been set on gene therapy with an AAV-delivered shortened version of dystrophin (µDys) for Duchenne muscular dystrophy (DMD), with several drug candidates currently undergoing clinical trials. Safety concerns with this therapeutic approach include the immune response to introduced dystrophin antigens observed in some DMD patients. Recent reports highlighted microutrophin (µUtrn) as a less immunogenic functional dystrophin substitute for gene therapy. In the current study, we created a human codon-optimized µUtrn which was subjected to side-by-side characterization with previously reported mouse and human µUtrn sequences after rAAV9 intramuscular injections in mdx mice. Long-term studies with systemic delivery of rAAV9-µUtrn demonstrated robust transgene expression in muscles, with localization to the sarcolemma, functional improvement of muscle performance, decreased creatine kinase levels, and lower immunogenicity as compared to µDys. An extensive toxicity study in wild-type rats did not reveal adverse changes associated with high-dose rAAV9 administration and human codon-optimized µUtrn overexpression. Furthermore, we verified that muscle-specific promoters MHCK7 and SPc5-12 drive a sufficient level of rAAV9-µUtrn expression to ameliorate the dystrophic phenotype in mdx mice. Our results provide ground for taking human codon-optimized µUtrn combined with muscle-specific promoters into clinical development as safe and efficient gene therapy for DMD.


Assuntos
Códon , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Utrofina/uso terapêutico , Animais , Creatina Quinase , Expressão Gênica , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos mdx , Músculos/metabolismo , Fenótipo , Utrofina/administração & dosagem , Utrofina/genética , Utrofina/metabolismo
12.
Biomedicines ; 11(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672569

RESUMO

Dysregulation of intraocular pressure (IOP) is one of the main risk factors for glaucoma. γ-synuclein is a member of the synuclein family of widely expressed synaptic proteins within the central nervous system that are implicated in certain types of neurodegeneration. γ-synuclein expression and localization changes in the retina and optic nerve of patients with glaucoma. However, the mechanisms by which γ-synuclein could contribute to glaucoma are poorly understood. We assessed the presence of autoantibodies to γ-synuclein in the blood serum of patients with primary open-angle glaucoma (POAG) by immunoblotting. A positive reaction was detected for five out of 25 patients (20%) with POAG. Autoantibodies to γ-synuclein were not detected in a group of patients without glaucoma. We studied the dynamics of IOP in response to IOP regulators in knockout mice (γ-KO) to understand a possible link between γ-synuclein dysfunction and glaucoma-related pathophysiological changes. The most prominent decrease of IOP in γ-KO mice was observed after the instillation of 1% phenylephrine and 10% dopamine. The total protein concentration in tear fluid of γ-KO mice was approximately two times higher than that of wild-type mice, and the activity of neurodegeneration-linked protein α2-macroglobulin was reduced. Therefore, γ-synuclein dysfunction contributes to pathological processes in glaucoma, including dysregulation of IOP.

13.
Eye Brain ; 13: 131-146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012311

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting in a gradual loss of motor neuron function. Although ophthalmic complaints are not presently considered a classic symptom of ALS, retinal changes such as thinning, axonal degeneration and inclusion bodies have been found in many patients. Retinal abnormalities observed in postmortem human tissues and animal models are similar to spinal cord changes in ALS. These findings are not dramatically unexpected because retina shares an ontogenetic relationship with the brain, and many genes are associated both with neurodegeneration and retinal diseases. Experimental studies have demonstrated that ALS affects many "vulnerable points" of the retina. Aggregate deposition, impaired nuclear protein import, endoplasmic reticulum stress, glutamate excitotoxicity, vascular regression, and mitochondrial dysfunction are factors suspected as being the main cause of motor neuron damage in ALS. Herein, we show that all of these pathways can affect retinal cells in the same way as motor neurons. Furthermore, we suppose that understanding the patterns of neuro-ophthalmic interaction in ALS can help in the diagnosis and treatment of this disease.

14.
Transgenic Res ; 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33855640

RESUMO

The current coronavirus disease (COVID-19) pandemic remains one of the most serious public health problems. Increasing evidence shows that infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a very complex and multifaceted disease that requires detailed study. Nevertheless, experimental research on COVID-19 remains challenging due to the lack of appropriate animal models. Herein, we report novel humanized mice with Cre-dependent expression of hACE2, the main entry receptor of SARS-CoV-2. These mice carry hACE2 and GFP transgenes floxed by the STOP cassette, allowing them to be used as breeders for the creation of animals with tissue-specific coexpression of hACE2 and GFP. Moreover, inducible expression of hACE2 makes this line biosafe, whereas coexpression with GFP simplifies the detection of transgene-expressing cells. In our study, we tested our line by crossing with Ubi-Cre mice, characterized by tamoxifen-dependent ubiquitous activation of Cre recombinase. After tamoxifen administration, the copy number of the STOP cassette was decreased, and the offspring expressed hACE2 and GFP, confirming the efficiency of our system. We believe that our model can be a useful tool for studying COVID-19 pathogenesis because the selective expression of hACE2 can shed light on the roles of different tissues in SARS-CoV-2-associated complications. Obviously, it can also be used for preclinical trials of antiviral drugs and new vaccines.

15.
Front Mol Biosci ; 8: 821506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118120

RESUMO

The novel coronavirus disease COVID-19 has become one of the most socially significant infections. One of the main models for COVID-19 pathogenesis study and anti-COVID-19 drug development is laboratory animals sensitive to the virus. Herein, we report SARS-CoV-2 infection in novel transgenic mice conditionally expressing human ACE2 (hACE2), with a focus on viral distribution after intranasal inoculation. Transgenic mice carrying hACE2 under the floxed STOP cassette [(hACE2-LoxP(STOP)] were mated with two types of Cre-ERT2 strains (UBC-Cre and Rosa-Cre). The resulting offspring with temporal control of transgene expression were treated with tamoxifen to induce the removal of the floxed STOP cassette, which prevented hACE2 expression. Before and after intranasal inoculation, the mice were weighed and clinically examined. On Days 5 and 10, the mice were sacrificed for isolation of internal organs and the further assessment of SARS-CoV-2 distribution. Intranasal SARS-CoV-2 inoculation in hACE2-LoxP(STOP)×UBC-Cre offspring resulted in weight loss and death in 6 out of 8 mice. Immunostaining and focus formation assays revealed the most significant viral load in the lung, brain, heart and intestine samples. In contrast, hACE2-LoxP(STOP) × Rosa-Cre offspring easily tolerated the infection, and SARS-CoV-2 was detected only in the brain and lungs, whereas other studied tissues had null or negligible levels of the virus. Histological examination revealed severe alterations in the lungs, and mild changes were observed in the brain tissues. Notably, no changes were observed in mice without tamoxifen treatment. Thus, this novel murine model with the Cre-dependent activation of hACE2 provides a useful and safe tool for COVID-19 studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...