Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23879, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903793

RESUMO

We have designed high-efficient spin-filtering junctions composed of graphene and silicon carbide nanoribbons. We have calculated the spin and charge transport in the junction by non-equilibrium Green's function formalism combined with the density functional theory to find its spin-dependent electrical conductance, thermal conductance and Seebeck coefficient. In addition, the effect of Si and C atoms vacancies on the transport properties of the junction has been carefully investigated. The enhanced spin-filtering is clearly observed due to the edge and vacancy effects. On the other hand, vacancy defects increase the electrical and spin conductances of the junctions. The results show that the considered junctions are half-metal with reduced thermal conductance which makes them a suitable spin-dependent thermoelectric device. Our results predict the promising potential of the considered junctions for application in spintronic devices.

2.
Sci Rep ; 11(1): 8958, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903663

RESUMO

Charge transfer characteristics of single-molecule junctions at the nanoscale, and consequently, their thermoelectric properties can be dramatically tuned by chemical or conformational modification of side groups or anchoring groups. In this study, we used density functional theory (DFT) combined with the non-equilibrium Green's function (NEGF) formalism in the linear response regime to examine the thermoelectric properties of a side-group-mediated anthracene molecule coupled to gold (Au) electrodes via anchoring groups. In order to provide a comparative inspection three different side groups, i.e. amine, nitro and methyl, in two different positions were considered for the functionalization of the molecule terminated with thiol or isocyanide anchoring groups. We showed that when the anchored molecule is perturbed with side group, the peaks of the transmission spectrum were shifted relative to the Fermi energy in comparison to the unperturbed molecule (i.e. without side group) leading to modified thermoelectric properties of the system. Particularly, in the thiol-terminated molecule the amine side group showed the greatest figure of merit in both positions which was suppressed by the change of side group position. However, in the isocyanide-terminated molecule the methyl side group attained the greatest thermoelectric efficiency where its magnitude was relatively robust to the change of side group position. In this way, different combinations of side groups and anchoring groups can improve or suppress thermopower and the figure of merit of the molecular junction depending on the interplay between charge donating/accepting nature of the functionals or their position.

3.
Sci Rep ; 10(1): 10922, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616835

RESUMO

Density functional theory (DFT) and the non-equilibrium Green's function (NEGF) formalism in the linear response regime were employed to investigate the impact of doping on the electronic and phononic transport properties in an anthracene molecule attached to two metallic zigzag graphene nanoribbons (ZGNRs). Boron (B) and nitrogen (N) atoms were used for doping and co-doping (NB) of carbon atoms located at the edge of the anthracene molecule. Our results show that B doping enhances the electronic transport in comparison with the other dopants which is due to its ability to increase the binding energy of the system. The chemical doping of the anthracene molecule mainly impacts on the thermopower which results in a significantly enhanced electronic contribution of the figure of merit. On the contrary, considering the effect of phononic thermal conductance suppresses the figure of merit. However, by taking into account the effect of both electron and phonon contributions to the thermal conductance, we find that the thermoelectric efficiency can be improved by B doping. The potential role of the phononic thermal conductance in shaping the thermoelectric properties of molecular junctions has been ignored in numerous studies, however, our findings demonstrate its importance for a realistic and accurate estimation of the thermoelectric figure of merit.

4.
IEEE Trans Biomed Circuits Syst ; 12(4): 871-883, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29994719

RESUMO

A quadrature synthetic aperture front-end receiver for B-mode ultrasound imaging is presented. The receiver targets small-scale imaging applications such as capsule endoscopy and low-cost portable devices. System complexity, area, power consumption, and cost are minimized using synthetic aperture beamforming (SAB), whereby signals are processed in a sequential manner using only a single channel. SAB is combined with quadrature (I/Q) sampling, which further reduces the bandwidth and computational load. I/Q demodulation is carried out using a full custom analog front-end (AFE), which comprises a low-noise, variable gain preamplifier, followed by a passive mixer, programmable gain amplifier (PGA) and active lowpass filter. A novel preamplifier design is proposed, with quasi-exponential time-gain control and low noise (${\text{5.42 nV}}/\sqrt{\text{Hz}}$ input-referred noise). Overall, the AFE consumes ${\text{7.8 mW}}$ (static power) and occupies ${\text{1.5}}\,\text{mm}\times {\text{1.5}}\,\text{mm}$ in AMS ${\text{0.35}}\,\mu \text{m}$ CMOS. Real-time SAB is carried out using a Spartan-6 FPGA, which dynamically apodises and focuses the data by interpolating and applying complex phase rotations to the I/Q samples. For a frame rate of ${\text{7}}\,\text{Hz}$ , the power consumption is ${\text{3.4}}\,\text{mW}/\text{channel}$ across an aperture of 64 elements. B-mode images were obtained using a database of ultrasound signals ( ${\text{2.5}}\,\text{MHz}$ center frequency) derived from a commercial ultrasound machine. The normalized root mean squared error between the quadrature SAB image and the RF reference image was ${\text{13}}\%$. Image quality/frame rate may be tuned by varying the degree of spatial compounding.


Assuntos
Ruído , Ultrassonografia/métodos , Amplificadores Eletrônicos , Desenho de Equipamento
5.
IEEE Trans Biomed Circuits Syst ; 11(3): 703-713, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28410111

RESUMO

Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.


Assuntos
Cálcio/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Dinâmica não Linear
6.
Front Neurosci ; 9: 409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26578867

RESUMO

This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n (2) memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

7.
Phys Chem Chem Phys ; 17(20): 13466-71, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25929682

RESUMO

Thermoelectric properties of a polyaniline molecular junction with face centered cubic electrodes are investigated using the Green function formalism in a linear response regime in the presence of the doping process. Doping causes the increase of thermopower and the figure of merit (ZT) and the decrease of electrical conductance as found experimentally in the work of Li et al., (Synthetic. Metals, 2010, 160, 1153-1158). We also find that the ZT increases with the molecular length in short polyanilines. [Golsanamlou et al., Phys. Chem. Chem. Phys., 2000, 35, 3523].

8.
IEEE Trans Neural Netw Learn Syst ; 26(1): 127-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25532161

RESUMO

This paper presents a modified astrocyte model that allows a convenient digital implementation. This model is aimed at reproducing relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system. Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte and a biological neuronal network model constructed by connecting two limit-cycle Hopf oscillators to an implementation of the proposed astrocyte model using oscillator-astrocyte interactions with weak coupling. Hardware synthesis, physical implementation on field-programmable gate array, and theoretical analysis confirm that the proposed astrocyte model, with considerably low hardware overhead, can mimic biological astrocyte model behaviors, resulting in desynchronization of the two coupled limit-cycle oscillators.


Assuntos
Astrócitos/fisiologia , Modelos Biológicos , Processamento de Sinais Assistido por Computador , Animais , Relógios Biológicos , Comunicação Celular , Simulação por Computador , Computadores , Eletrônica/instrumentação , Eletrônica/métodos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador/instrumentação
9.
Neural Netw ; 51: 26-38, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24365534

RESUMO

This paper presents a set of reconfigurable analog implementations of piecewise linear spiking neuron models using second generation current conveyor (CCII) building blocks. With the same topology and circuit elements, without W/L modification which is impossible after circuit fabrication, these circuits can produce different behaviors, similar to the biological neurons, both for a single neuron as well as a network of neurons just by tuning reference current and voltage sources. The models are investigated, in terms of analog implementation feasibility and costs, targeting large scale hardware implementations. Results show that, in order to gain the best performance, area and accuracy; these models can be compromised. Simulation results are presented for different neuron behaviors with CMOS 350 nm technology.


Assuntos
Computadores Analógicos , Modelos Lineares , Modelos Neurológicos , Redes Neurais de Computação , Potenciais de Ação , Simulação por Computador , Computadores , Custos e Análise de Custo , Estudos de Viabilidade , Método de Monte Carlo , Neurônios/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...