Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 12(12): 962-971, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28494138

RESUMO

Based on previous studies indicating the pharmacophoric role of a hydrazone group and azole rings for antiplatelet aggregation activity, a few series of compounds with both hydrazone and an azole (imidazole) ring in their structures were synthesized, and their platelet aggregation inhibitory effects were evaluated. Two of these 1-(arylideneamino)-4-aryl-1H-imidazole-2-amine derivatives, compounds 4 a [(E)-1-(benzylideneamino)-4-phenyl-1H-imidazol-2-amine] and 4 p [(E)-4-phenyl-1-((thiophen-2-ylmethylene)amino)-1H-imidazol-2-amine], exhibited IC50 values similar to that of acetylsalicylic acid against collagen as a platelet aggregation inducer. Structural comparison of the synthesized compounds revealed that those with a para-substituted phenyl ring on the imidazole were among the most active compounds against platelet aggregation induced by arachidonic acid (AA), and the presence of a thiophene ring in these compounds maximized their antiplatelet activity.


Assuntos
Aminas/farmacologia , Desenho de Fármacos , Imidazóis/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/farmacologia , Aminas/síntese química , Aminas/química , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Relação Estrutura-Atividade
2.
Iran J Pharm Res ; 12(2): 331-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250608

RESUMO

In this work, we reported the synthesis and evaluation of antimycobacterial and antifungal activity of a series of thiocarbohydrazone derivatives which are thiacetazone congeners. The target compounds were synthesized in superior yields by reacting thiocarbohydrazide with different aromatic aldehydes and methyl ketones. Compounds 8, 19 and 25 were found to be the most potent derivatives, exhibiting acceptable activity against Mycobacterium bovis BCG compared to thiacetazone and ethambutol as reference substances. Compounds 8, 15 and 25 exhibited the highest activity against Candida albicans. The most active compounds had a completely different aromatic ring system with various electronic, steric and lipophilic natures. This is understandable in light of the fact that carbohydrazone derivatives must undergo a metabolic activation step before exerting their anti-TB activity and different SAR rules govern each one of these two processes.

3.
Iran J Pharm Res ; 12(3): 255-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250631

RESUMO

Dacarbazine is an antitumor prodrug which is used for the treatment of malignant metastatic melanoma and Hodgkin's disease. It requires initial activation in liver through an N-demethylationreaction. The active metabolite prevents the progress of disease via alkylation of guanine bases in DNA strands. In order to investigate the importance of imidazole ring and its dynamictautomerization in anticancer activity of dacarbazine, a pyridine analog of this drug was synthesized and the cytotoxic activity and cellular-molecular mechanisms of action for this compound were compared with those of dacarbazine. EC50 values for dacarbazine and the pyridine analog were found to be 56 µM and 33 µM respectively. Both dacarbazine and the pyridine analog resulted in formation of reactive oxygen species (ROS) upon their addition to the isolated rat hepatocytes. They also decreased the mitochondrial membrane potential and causedlysosomal membrane rupture. Cytotoxicity was prevented by ROS scavengers and antioxidants. Cytotoxicity wasalso prevented by CYP450 inhibitors, lysosomalinactivators and MPT (Mitochondrial Permeability Transition Pore) blockers.

4.
Iran J Pharm Res ; 12(4): 729-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24523752

RESUMO

Radioiodinated meta-iodobenzylguanidine (MIBG) is one of the important radiopharmaceuticals in Nuclear Medicine. [(123/131)I] MIBG is used for imaging of Adrenal medulla, studying heart sympathetic nerves, treatment of pheochromacytoma and neuroblastoma. For clinical application, radioiodinated MIBG is prepared through isotopic exchange method, which includes replacement of radioactive iodine in a nucleophilic substitution reaction with cold iodine ((127)I). The unlabelled MIBG hemisulfate is synthesized by the procedure described by Wieland et al. (1980). The availability of a more practical and cost-effective procedure for MIBG preparation encouraged us to study the MIBG synthesis methods. In this study the preparation of MIBG through different methods were evaluated and a new method, which is one step, simple and cost-effective is introduced. The method has ability to be scaled up for production of unlabelled MIBG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...