Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242408

RESUMO

Adsorption-based treatment of sulfate contaminated water sources present challenges due to its favourable hydration characteristics. Herein, a copper-modified granular chitosan-based biocomposite (CHP-Cu) was prepared and characterized for its sulfate adsorption properties at neutral pH via batch equilibrium and fixed-bed column studies. The CHP-Cu adsorbent was characterized by complementary methods: spectroscopy (IR, Raman, X-ray photoelectron), thermal gravimetry analysis (TGA) and pH-based surface charge analysis. Sulfate adsorption at pH 7.2 with CHP-Cu follows the Sips isotherm model with a maximum adsorption capacity (407 mg/g) that exceeds most reported values of granular biosorbents at similar conditions. For the dynamic adsorption study, initial sulfate concentration, bed height, and flow rate were influential parameters governing sulfate adsorption. The Thomas and Yoon-Nelson models yield a sulfate adsorption capacity (146 mg/g) for the fixed bed system at optimized conditions. CHP-Cu was regenerated over 5 cycles (33 % to 31 %) with negligible Cu-leaching. The adsorbent also displays excellent sulfate uptake properties, regenerability, and sustainable adsorbent properties for effective point-of-use sulfate remediation in aqueous media near neutral pH (7.2). This sulfate remediation strategy is proposed for other oxyanion systems relevant to contaminated environmental surface and groundwater resources.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Cobre/química , Sulfatos , Poluentes Químicos da Água/química , Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética
2.
Materials (Basel) ; 13(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456240

RESUMO

In the present study, variable forms of pelletized chitosan adsorbents were prepared and their sulfate uptake properties in aqueous solution was studied in a fixed-bed column system. Unmodified chitosan pellets (CP), cross-linked chitosan pellets with glutaraldehyde (CL-CP), and calcium-doped forms of these pellets (Ca-CP, Ca-CL-CP) were prepared, where the removal efficiencies and breakthrough curves were studied. Dynamic adsorption experiments were conducted at pH 4.5 and 6.5 with a specific flow rate of 3 mL/min, fixed-bed height of 200 mm, and an initial sulfate concentration of 1000 mg/L. Breakthrough parameters demonstrated that Ca-CP had the best sulfate removal among the adsorbents, where the following adsorption parameters were obtained: breakthrough time (75 min), exhaust time (300 min), maximum sulfate adsorption capacity (qmax; 46.6 mg/g), and sulfate removal (57%) at pH 4.5. Two well-known kinetic adsorption models, Thomas and Yoon-Nelson, were fitted to the experimental kinetic data to characterize the breakthrough curves. The fixed-bed column experimental results were well-fitted by both models and the maximum adsorption capacity (46.9 mg/g) obtained was for the Ca-CP adsorbent. A regeneration study over four adsorption-desorption cycles suggested that Ca-CP is a promising adsorbent for sulfate removal in a fixed-bed column system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...