Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3165, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823297

RESUMO

It is well known that infrared microscopy of micrometer sized samples suffers from strong scattering distortions, attributed to Mie scattering. The state-of-the-art preprocessing technique for modelling and removing Mie scattering features from infrared absorbance spectra of biological samples is built on a meta model for perfect spheres. However, non-spherical cell shapes are the norm rather than the exception, and it is therefore highly relevant to evaluate the validity of this preprocessing technique for deformed spherical systems. Addressing these cases, we investigate both numerically and experimentally the absorbance spectra of 3D-printed individual domes, rows of up to five domes, two domes with varying distance, and semi-capsules of varying lengths as model systems of deformed individual cells and small cell clusters. We find that coupling effects between individual domes are small, corroborating previous related literature results for spheres. Further, we point out and illustrate with examples that, while optical reciprocity guarantees the same extinction efficiency for top vs. bottom illumination, a scatterer's internal field may be vastly different in these two situations. Finally, we demonstrate that the ME-EMSC model for preprocessing infrared spectra from spherical biological systems is valid also for deformed spherical systems.


Assuntos
Algoritmos , Modelos Biológicos , Espalhamento de Radiação , Luz , Microscopia
2.
Sci Rep ; 12(1): 13327, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922455

RESUMO

Infrared microspectroscopy is a powerful tool in the analysis of biological samples. However, strong electromagnetic scattering may occur since the wavelength of the incident radiation and the samples may be of comparable size. Based on the Mie theory of single spheres, correction algorithms have been developed to retrieve pure absorbance spectra. Studies of the scattering characteristics of samples of different types, obtained by microspectroscopy, have been performed. However, the detailed, microscopic effects of the coupling of the samples on signatures in spectra, obtained by infrared microspectroscopy, are still not clear. The aim of this paper is to investigate how the coupling of spherical samples influences the spectra. Applying the surface integral equation (SIE) method, we simulate small dielectric spheres, arranged as double-spheres or small arrays of spheres. We find that the coupling of the spheres hardly influences the broad oscillations observed in infrared spectra (the Mie wiggles) unless the radii of the spheres are different or the angle between the direction of the incident radiation and the normal of the plane where the spheres are located is large. Sharp resonance features in the spectra (the Mie ripples) are affected by the coupling of the spheres and this effect depends on the polarization of the incident wave. Experiments are performed to verify our conclusions.


Assuntos
Algoritmos , Luz
3.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408697

RESUMO

Preclassification of raw infrared spectra has often been neglected in scientific literature. Separating spectra of low spectral quality, due to low signal-to-noise ratio, presence of artifacts, and low analyte presence, is crucial for accurate model development. Furthermore, it is very important for sparse data, where it becomes challenging to visually inspect spectra of different natures. Hence, a preclassification approach to separate infrared spectra for sparse data is needed. In this study, we propose a preclassification approach based on Multiplicative Signal Correction (MSC). The MSC approach was applied on human and the bovine knee cartilage broadband Fourier Transform Infrared (FTIR) spectra and on a sparse data subset comprising of only seven wavelengths. The goal of the preclassification was to separate spectra with analyte-rich signals (i.e., cartilage) from spectra with analyte-poor (and high-matrix) signals (i.e., water). The human datasets 1 and 2 contained 814 and 815 spectra, while the bovine dataset contained 396 spectra. A pure water spectrum was used as a reference spectrum in the MSC approach. A threshold for the root mean square error (RMSE) was used to separate cartilage from water spectra for broadband and the sparse spectral data. Additionally, standard noise-to-ratio and principle component analysis were applied on broadband spectra. The fully automated MSC preclassification approach, using water as reference spectrum, performed as well as the manual visual inspection. Moreover, it enabled not only separation of cartilage from water spectra in broadband spectral datasets, but also in sparse datasets where manual visual inspection cannot be applied.


Assuntos
Luz , Água , Animais , Bovinos , Humanos , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
4.
Molecules ; 27(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335264

RESUMO

Extended multiplicative signal correction (EMSC) is a widely used preprocessing technique in infrared spectroscopy. EMSC is a model-based method favored for its flexibility and versatility. The model can be extended by adding constituent spectra to explicitly model-known analytes or interferents. This paper addresses the use of constituent spectra and demonstrates common pitfalls. It clarifies the difference between analyte and interferent spectra, and the importance of orthogonality between model spectra. Different normalization approaches are discussed, and the importance of weighting in the EMSC is demonstrated. The paper illustrates how constituent analyte spectra can be estimated, and how they can be used to extract additional information from spectral features. It is shown that the EMSC parameters can be used in both regression tasks and segmentation tasks.


Assuntos
Espectrofotometria Infravermelho
5.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164133

RESUMO

The aim of the study was to optimize preprocessing of sparse infrared spectral data. The sparse data were obtained by reducing broadband Fourier transform infrared attenuated total reflectance spectra of bovine and human cartilage, as well as of simulated spectral data, comprising several thousand spectral variables into datasets comprising only seven spectral variables. Different preprocessing approaches were compared, including simple baseline correction and normalization procedures, and model-based preprocessing, such as multiplicative signal correction (MSC). The optimal preprocessing was selected based on the quality of classification models established by partial least squares discriminant analysis for discriminating healthy and damaged cartilage samples. The best results for the sparse data were obtained by preprocessing using a baseline offset correction at 1800 cm-1, followed by peak normalization at 850 cm-1 and preprocessing by MSC.


Assuntos
Cartilagem/química , Processamento de Sinais Assistido por Computador , Animais , Bovinos , Feminino , Humanos , Masculino , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Biophotonics ; 14(12): e202100148, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34468082

RESUMO

In infrared spectroscopy of thin film samples, interference introduces distortions in spectra, commonly referred to as fringes. Fringes may alter absorbance peak ratios, which hampers the spectral analysis. We have previously introduced extended multiplicative signal correction (EMSC) for fringes correction. In the current article, we provide a robust open-source algorithm for fringe correction in infrared spectroscopy and propose several improvements to the Fringe EMSC model. The suggested algorithm achieves a more precise fringe frequency estimation by mean centering of the measured spectrum and applying a window function prior to the Fourier transform. It selects two frequencies from a user defined number of maxima in the Fourier domain. The improved Fringe EMSC algorithm is validated on two experimental datasets, one of them being a hyperspectral image. Techniques for separating sample spectra from background spectra in hyperspectral images, and techniques to identify spectra affected by fringes are also provided.


Assuntos
Algoritmos , Imageamento Hiperespectral , Espectrofotometria Infravermelho
7.
Sci Rep ; 11(1): 4675, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633244

RESUMO

Mie-type scattering features such as ripples (i.e., sharp shape-resonance peaks) and wiggles (i.e., broad oscillations), are frequently-observed scattering phenomena in infrared microspectroscopy of cells and tissues. They appear in general when the wavelength of electromagnetic radiation is of the same order as the size of the scatterer. By use of approximations to the Mie solutions for spheres, iterative algorithms have been developed to retrieve pure absorbance spectra. However, the question remains to what extent the Mie solutions, and approximations thereof, describe the extinction efficiency in practical situations where the shapes of scatterers deviate considerably from spheres. The aim of the current study is to investigate how deviations from a spherical scatterer can change the extinction properties of the scatterer in the context of chaos in wave systems. For this purpose, we investigate a chaotic scatterer and compare it with an elliptically shaped scatterer, which exhibits only regular scattering. We find that chaotic scattering has an accelerating effect on the disappearance of Mie ripples. We further show that the presence of absorption and the high numerical aperture of infrared microscopes does not explain the absence of ripples in most measurements of biological samples.


Assuntos
Espalhamento de Radiação , Espectrofotometria Infravermelho/métodos , Algoritmos , Fenômenos Físicos , Síncrotrons
8.
J Biophotonics ; 13(12): e202000204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32844585

RESUMO

Infrared spectroscopy of cells and tissues is prone to Mie scattering distortions, which grossly obscure the relevant chemical signals. The state-of-the-art Mie extinction extended multiplicative signal correction (ME-EMSC) algorithm is a powerful tool for the recovery of pure absorbance spectra from highly scatter-distorted spectra. However, the algorithm is computationally expensive and the correction of large infrared imaging datasets requires weeks of computations. In this paper, we present a deep convolutional descattering autoencoder (DSAE) which was trained on a set of ME-EMSC corrected infrared spectra and which can massively reduce the computation time for scatter correction. Since the raw spectra showed large variability in chemical features, different reference spectra matching the chemical signals of the spectra were used to initialize the ME-EMSC algorithm, which is beneficial for the quality of the correction and the speed of the algorithm. One DSAE was trained on the spectra, which were corrected with different reference spectra and validated on independent test data. The DSAE outperformed the ME-EMSC correction in terms of speed, robustness, and noise levels. We confirm that the same chemical information is contained in the DSAE corrected spectra as in the spectra corrected with ME-EMSC.


Assuntos
Algoritmos , Redes Neurais de Computação , Luz , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...