Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724927

RESUMO

Carbon nanotubes (CNTs) can be incorporated in various materials to enhance their mechanical or electrical properties. Information on their precise concentration and local distribution is difficult to access non-invasively. For example, electron microscopy studies require cutting of samples. Another way to measure the concentration of CNTs is by the magnetic susceptibility of the ferrocene present in the CNTs by the synthesis process, which can be performed on sample coupons on a vibrating sample magnetometer (VSM); VSM is a bulky laboratory instrument, and the size of the samples studied is constrained. In order to provide a technique that is fast, easy, cheap, and adaptable to the size of the samples, we have developed a benchtop device that measures the CNT concentration through an original inductive dynamic measurement of the ferrocene magnetic susceptibility. We present the method for extracting CNT concentrations and show the results obtained on cement matrices with CNT concentrations of the order of a few percent.

2.
bioRxiv ; 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425851

RESUMO

Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is much easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported. At the microscale however, while benefits of recording magnetic counterparts of electric spikes would be numerous, they are also highly challenging in vivo. Here, we combine magnetic and electric recordings of neuronal action potentials in anesthetized rats using miniaturized giant magneto-resistance (GMR) sensors. We reveal the magnetic signature of action potentials of well isolated single units. The recorded magnetic signals showed a distinct waveform and considerable signal strength. This demonstration of in vivo magnetic action potentials opens a wide field of possibilities to profit from the combined power of magnetic and electric recordings and thus to significantly advance the understanding of neuronal circuits.

3.
Lab Chip ; 22(14): 2753-2765, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771555

RESUMO

The development of rapid, sensitive, portable and inexpensive early diagnostic techniques is a real challenge in the fields of health, defense and in the environment. The current global pandemic has also shown the need for such tests. The World Health Organization has defined ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users) that field diagnostic tests must fulfill, which proves the real need in terms of public health. Giant magnetoresistance (GMR) sensors, which have flourished in a wide variety of spintronic applications (automobile industry, Information Technology, etc.), also have real potential in the field of health, particularly for the development of early diagnostic point-of-care devices. This work presents a new type of innovative biochip, consisting of GMR sensors arranged on both sides of a microfluidic channel which allow on the one hand to count magnetic objects one by one but also to better distinguish false positives (aggregates of beads, etc.) from labelled biological targets of interest by determining their magnetic moment. We present the operating principle of this new tool and its great potential as a versatile diagnostic test.


Assuntos
Testes Diagnósticos de Rotina , Dispositivos Lab-On-A-Chip , Magnetismo , Análise em Microsséries
4.
ACS Sens ; 5(11): 3493-3500, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33108725

RESUMO

Neuronal electrical activity is widely studied in vivo, and the ability to measure its magnetic equivalent to obtain an undisturbed signal with both amplitude and direction information leading to neuronal signal mapping would be a promising tool for neuroscience. To provide such a tool, a probe with spin-electronics-based magnetic sensors with orthogonal axes of sensitivity for two directions of measurement is realized, thanks to a local magnetization re-orientation technique induced by Joule heating. This probe is tested under in vivo measurement conditions in the brain of an anesthetized rat. To be as close as possible to neurons and to create minimal damage during the probe's insertion, the tip thickness has been drastically decreased using a silicon-on-insulator substrate. Our probes provide the ability to perform in vivo magnetic measurements on two orthogonal axes on a 25 µm thick silicon tip with a sensitivity of 1.7%/mT along one axis and 0.9%/mT along the perpendicular axis in the sensor plane, for a limit of detection at 1 kHz of 1.0 and 1.3 nT, respectively. These probes have been tested through a phantom study and during an in vivo experiment. The robustness and stability over one year are demonstrated.


Assuntos
Técnicas Biossensoriais , Silício , Animais , Eletrônica , Magnetismo , Neurônios , Ratos
5.
Nat Commun ; 6: 7635, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154986

RESUMO

In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii-Moriya (IDM) interaction. This interfacial nature of the IDM interaction has been recently revisited because of its scientific and technological potential. Here we demonstrate an experimental technique to straightforwardly observe the IDM interaction, namely Brillouin light scattering. The non-reciprocal spin wave dispersions, systematically measured by Brillouin light scattering, allow not only the determination of the IDM energy densities beyond the regime of perpendicular magnetization but also the revelation of the inverse proportionality with the thickness of the magnetic layer, which is a clear signature of the interfacial nature. Altogether, our experimental and theoretical approaches involving double time Green's function methods open up possibilities for exploring magnetic hybrid structures for engineering the IDM interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...