Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 145: 90-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735894

RESUMO

We introduce Interpolation Consistency Training (ICT), a simple and computation efficient algorithm for training Deep Neural Networks in the semi-supervised learning paradigm. ICT encourages the prediction at an interpolation of unlabeled points to be consistent with the interpolation of the predictions at those points. In classification problems, ICT moves the decision boundary to low-density regions of the data distribution. Our experiments show that ICT achieves state-of-the-art performance when applied to standard neural network architectures on the CIFAR-10 and SVHN benchmark datasets. Our theoretical analysis shows that ICT corresponds to a certain type of data-adaptive regularization with unlabeled points which reduces overfitting to labeled points under high confidence values.


Assuntos
Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Algoritmos , Benchmarking
2.
Artigo em Inglês | MEDLINE | ID: mdl-24329333

RESUMO

This paper introduces a spatiotemporal resonator model and an inference method for detection and estimation of nearly periodic temporal phenomena in spatiotemporal data. The model is derived as a spatial extension of a stochastic harmonic resonator model, which can be formulated in terms of a stochastic differential equation. The spatial structure is included by introducing linear operators, which affect both the oscillations and damping, and by choosing the appropriate spatial covariance structure of the driving time-white noise process. With the choice of the linear operators as partial differential operators, the resonator model becomes a stochastic partial differential equation, which is compatible with infinite-dimensional Kalman filtering. The resulting infinite-dimensional Kalman filtering problem allows for a computationally efficient solution as the computational cost scales linearly with measurements in the temporal dimension. This framework is applied to weather prediction and to physiological noise elimination in functional magnetic resonance imaging brain data.

3.
Neuroimage ; 60(2): 1517-27, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22281675

RESUMO

In this article we introduce the DRIFTER algorithm, which is a new model based Bayesian method for retrospective elimination of physiological noise from functional magnetic resonance imaging (fMRI) data. In the method, we first estimate the frequency trajectories of the physiological signals with the interacting multiple models (IMM) filter algorithm. The frequency trajectories can be estimated from external reference signals, or if the temporal resolution is high enough, from the fMRI data. The estimated frequency trajectories are then used in a state space model in combination of a Kalman filter (KF) and Rauch-Tung-Striebel (RTS) smoother, which separates the signal into an activation related cleaned signal, physiological noise, and white measurement noise components. Using experimental data, we show that the method outperforms the RETROICOR algorithm if the shape and amplitude of the physiological signals change over time.


Assuntos
Algoritmos , Artefatos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...