Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38105963

RESUMO

Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we developed a regularized and constraint-based Dynamic Metabolic Flux Analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Thus, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.

2.
Methods Mol Biol ; 2295: 157-177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047977

RESUMO

Mass spectrometry has increasingly been used as a tool to complement studies of sphingolipid metabolism and biological functions in plants and other eukaryotes. Mass spectrometry is now essential for comprehensive sphingolipid analytical profiling because of the huge diversity of sphingolipid classes and molecular species in eukaryotes, particularly in plants. This structural diversity arises from large differences in polar head group glycosylation as well as carbon-chain lengths of fatty acids and desaturation and hydroxylation patterns of fatty acids and long-chain bases that together comprise the ceramide hydrophobic backbone of glycosphingolipids. The standard methods for liquid chromatography-mass spectrometry (LC-MS)-based analyses of Arabidopsis thaliana leaf sphingolipids profile >200 molecular species of four sphingolipid classes and free long-chain bases and their phosphorylated forms. While these methods have proven valuable for A. thaliana based sphingolipid research, we have recently adapted them for use with ultraperformance liquid chromatography separations of molecular species and to profile aberrant sphingolipid forms in pollen, transgenic lines, and mutants. This chapter provides updates to standard methods for LC-MS profiling of A. thaliana sphingolipids to expand the utility of mass spectrometry for plant sphingolipid research.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Plantas/metabolismo , Esfingolipídeos/análise , Ceramidas/metabolismo , Cromatografia Líquida/métodos , Ácidos Graxos/metabolismo , Glicoesfingolipídeos/metabolismo , Glicosilação , Espectrometria de Massas/métodos , Fosforilação , Folhas de Planta/metabolismo , Pólen/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
PLoS Comput Biol ; 17(1): e1008284, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507896

RESUMO

Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network's response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance.


Assuntos
Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas/genética , Orosomucoide , Esfingolipídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidas/genética , Ceramidas/metabolismo , Biologia Computacional , Redes e Vias Metabólicas/genética , Modelos Biológicos , Orosomucoide/genética , Orosomucoide/metabolismo , Plântula/genética , Plântula/metabolismo , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...