Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6): L062602, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020950

RESUMO

Emergent nonreciprocal interactions violating Newton's third law are widespread in out-of-equilibrium systems. Phase separating mixtures with such interactions exhibit traveling states with no equilibrium counterpart. Using extensive Brownian dynamics simulations, we investigate the existence and stability of such traveling states in a generic nonreciprocal particle system. By varying a broad range of parameters including aggregate state of mixture components, diffusivity, degree of nonreciprocity, effective spatial dimension and density, we determine that traveling states do exist below the predator-prey regime, but nonetheless are only found in a narrow region of the parameter space. Our work also sheds light on the physical mechanisms for the disappearance of traveling states when relevant parameters are being varied, and has implications for a range of nonequilibrium systems including nonreciprocal phase separating mixtures, nonequilibrium pattern formation and predator-prey models.

2.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038209

RESUMO

We present a method for computing locally varying nonlinear mechanical properties in particle simulations of amorphous solids. Plastic rearrangements outside a probed region are suppressed by introducing an external field that directly penalizes large nonaffine displacements. With increasing strength of the field, plastic deformation can be localized. We characterize the distribution of local plastic yield stresses (residual local stresses to instability) with our approach and assess the correlation of their spatial maps with plastic activity in a model two-dimensional amorphous solid. Our approach reduces artifacts inherent in a previous method known as the "frozen matrix" approach that enforces fully affine deformation and improves the prediction of plastic rearrangements from structural information.

3.
Nat Commun ; 14(1): 7035, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923724

RESUMO

In active matter, particles typically experience mediated interactions, which are not constrained by Newton's third law and are therefore generically non-reciprocal. Non-reciprocity leads to a rich set of emerging behaviors that are hard to account for starting from the microscopic scale, due to the absence of a generic theoretical framework out of equilibrium. Here we consider bacterial mixtures that interact via mediated, non-reciprocal interactions (NRI) like quorum-sensing and chemotaxis. By explicitly relating microscopic and macroscopic dynamics, we show that, under conditions that we derive explicitly, non-reciprocity may fade upon coarse-graining, leading to large-scale equilibrium descriptions. In turn, this allows us to account quantitatively, and without fitting parameters, for the rich behaviors observed in microscopic simulations including phase separation, demixing, and multi-phase coexistence. We also derive the condition under which non-reciprocity survives coarse-graining, leading to a wealth of dynamical patterns. Again, our analytical approach allows us to predict the phase diagram of the system starting from its microscopic description. All in all, our work demonstrates that the fate of non-reciprocity across scales is a subtle and important question.

4.
Phys Rev Lett ; 131(5): 058401, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595221

RESUMO

Understanding the phase behavior of mixtures with many components is important in many contexts, including as a key step toward a physics-based description of intracellular compartmentalization. Here, we study phase ordering instabilities in a paradigmatic model that represents the complexity of-e.g., biological-mixtures via random second virial coefficients. Using tools from free probability theory we obtain the exact spinodal curve and the nature of instabilities for a mixture with an arbitrary composition, thus lifting an important restriction in previous work. We show that, by controlling the concentration of only a few components, one can systematically change the nature of the spinodal instability and achieve demixing for realistic scenarios by a strong composition imbalance amplification. This results from a nontrivial interplay of interaction complexity and entropic effects due to the nonuniform composition. Our approach can be extended to include additional systematic interactions, leading to a competition between different forms of demixing as density is varied.

5.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272577

RESUMO

Extending the famous model B for the time evolution of a liquid mixture, we derive an approximate expression for the mobility matrix that couples different mixture components. This approach is based on a single component fluid with particles that are artificially grouped into separate species labeled by "colors." The resulting mobility matrix depends on a single dimensionless parameter, which can be determined efficiently from experimental data or numerical simulations, and includes existing standard forms as special cases. We identify two distinct mobility regimes, corresponding to collective motion and interdiffusion, respectively, and show how they emerge from the microscopic properties of the fluid. As a test scenario, we study the dynamics after a thermal quench, providing a number of general relations and analytical insights from a Gaussian theory. Specifically, for systems with two or three components, analytical results for the time evolution of the equal time correlation function compare well to results of Monte Carlo simulations of a lattice gas. A rich behavior is observed, including the possibility of transient fractionation.

6.
Soft Matter ; 19(21): 3871-3883, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195636

RESUMO

We use numerical simulations to study the dynamics of dense assemblies of self-propelled particles in the limit of extremely large, but finite, persistence times. In this limit, the system evolves intermittently between mechanical equilibria where active forces balance interparticle interactions. We develop an efficient numerical strategy allowing us to resolve the statistical properties of elastic and plastic relaxation events caused by activity-driven fluctuations. The system relaxes via a succession of scale-free elastic events and broadly distributed plastic events that both depend on the system size. Correlations between plastic events lead to emergent dynamic facilitation and heterogeneous relaxation dynamics. Our results show that dynamical behaviour in extremely persistent active systems is qualitatively similar to that of sheared amorphous solids, yet with some important differences.

7.
Sci Rep ; 13(1): 3853, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890184

RESUMO

Noise-induced escape from metastable states governs a plethora of transition phenomena in physics, chemistry, and biology. While the escape problem in the presence of thermal Gaussian noise has been well understood since the seminal works of Arrhenius and Kramers, many systems, in particular living ones, are effectively driven by non-Gaussian noise for which the conventional theory does not apply. Here we present a theoretical framework based on path integrals that allows the calculation of both escape rates and optimal escape paths for a generic class of non-Gaussian noises. We find that non-Gaussian noise always leads to more efficient escape and can enhance escape rates by many orders of magnitude compared with thermal noise, highlighting that away from equilibrium escape rates cannot be reliably modelled based on the traditional Arrhenius-Kramers result. Our analysis also identifies a new universality class of non-Gaussian noises, for which escape paths are dominated by large jumps.

8.
Nat Commun ; 13(1): 4424, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908018

RESUMO

Force chains are quasi-linear self-organised structures carrying large stresses and are ubiquitous in jammed amorphous materials like granular materials, foams or even cell assemblies. Predicting where they will form upon deformation is crucial to describe the properties of such materials, but remains an open question. Here we demonstrate that graph neural networks (GNN) can accurately predict the location of force chains in both frictionless and frictional materials from the undeformed structure, without any additional information. The GNN prediction accuracy also proves to be robust to changes in packing fraction, mixture composition, amount of deformation, friction coefficient, system size, and the form of the interaction potential. By analysing the structure of the force chains, we identify the key features that affect prediction accuracy. Our results and methodology will be of interest for granular matter and disordered systems, e.g. in cases where direct force chain visualisation or force measurements are impossible.


Assuntos
Redes Neurais de Computação , Fricção
9.
Phys Rev E ; 105(5-1): 054109, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706262

RESUMO

Inspired by works on the Anderson model on sparse graphs, we devise a method to analyze the localization properties of sparse systems that may be solved using cavity theory. We apply this method to study the properties of the eigenvectors of the master operator of the sparse Barrat-Mézard trap model, with an emphasis on the extended phase. As probes for localization, we consider the inverse participation ratio and the correlation volume, both dependent on the distribution of the diagonal elements of the resolvent. Our results reveal a rich and nontrivial behavior of the estimators across the spectrum of relaxation rates and an interplay between entropic and activation mechanisms of relaxation that give rise to localized modes embedded in the bulk of extended states. We characterize this route to localization and find it to be distinct from the paradigmatic Anderson model or standard random matrix systems.

10.
Phys Rev Lett ; 128(19): 198001, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622036

RESUMO

We study a mean field elastoplastic model, embedded within a disordered landscape of local yield barriers, to shed light on the behavior of athermal amorphous solids subject to oscillatory shear. We show that the model presents a genuine dynamical transition between an elastic and a yielded state, and qualitatively reproduces the dependence on the initial degree of annealing found in particle simulations. For initial conditions prepared below the analytically derived threshold energy, we observe a nontrivial, nonmonotonic approach to the yielded state. The timescale diverges as one approaches the yielding point from above, which we identify with the fatigue limit. We finally discuss the connections to brittle yielding under uniform shear.

11.
J Chem Phys ; 156(15): 154901, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459308

RESUMO

We show that the slow viscoelastic response of a foam is that of a power-law fluid with a terminal relaxation. Investigations of the foam mechanics in creep and recovery tests reveal that the power-law contribution is fully reversible, indicative of a delayed elastic response. We demonstrate how this contribution fully accounts for the non-Maxwellian features observed in all tests, probing the linear mechanical response function. The associated power-law spectrum is consistent with soft glassy rheology of systems with mechanical noise temperatures just above the glass transition [Fielding et al., J. Rheol. 44, 323 (2000)] and originates from a combination of superdiffusive bubble dynamics and stress diffusion, as recently evidenced in simulations of coarsening foam [Hwang et al., Nat. Mater. 15, 1031 (2016)].

12.
Soft Matter ; 17(43): 9926-9936, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676388

RESUMO

Self-propelled swimmers such as bacteria agglomerate into clusters as a result of their persistent motion. In 1D, those clusters do not coalesce macroscopically and the stationary cluster size distribution (CSD) takes an exponential form. We develop a minimal lattice model for active particles in narrow channels to study how clustering is affected by the interplay between self-propulsion speed diversity and confinement. A mixture of run-and-tumble particles with a distribution of self-propulsion speeds is simulated in 1D. Particles can swap positions at rates proportional to their relative self-propulsion speed. Without swapping, we find that the average cluster size Lc decreases with diversity and follows a non-arithmetic power mean of the single-component Lc's, unlike the case of tumbling-rate diversity previously studied. Effectively, the mixture is thus equivalent to a system of identical particles whose self-propulsion speed is the harmonic mean self-propulsion speed of the mixture. With swapping, particles escape more quickly from clusters. As a consequence, Lc decreases with swapping rates and depends less strongly on diversity. We derive a dynamical equilibrium theory for the CSDs of binary and fully polydisperse systems. Similarly to the clustering behaviour of one-component models, our qualitative results for mixtures are expected to be universal across active matter. Using literature experimental values for the self-propulsion speed diversity of unicellular swimmers known as choanoflagellates, which naturally differentiate into slower and faster cells, we predict that the error in estimating their Lcvia one-component models which use the conventional arithmetic mean self-propulsion speed is around 30%.


Assuntos
Análise por Conglomerados , Movimento (Física)
13.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551973

RESUMO

Dense assemblies of self-propelled particles that can form solid-like states also known as active or living glasses are abundant around us, covering a broad range of length scales and timescales: from the cytoplasm to tissues, from bacterial biofilms to vehicular traffic jams, and from Janus colloids to animal herds. Being structurally disordered as well as strongly out of equilibrium, these systems show fascinating dynamical and mechanical properties. Using extensive molecular dynamics simulation and a number of distinct dynamical and mechanical order parameters, we differentiate three dynamical steady states in a sheared model active glassy system: 1) a disordered state, 2) a propulsion-induced ordered state, and 3) a shear-induced ordered state. We supplement these observations with an analytical theory based on an effective single-particle Fokker-Planck description to rationalize the existence of the shear-induced orientational ordering behavior in an active glassy system without explicit aligning interactions of, for example, Vicsek type. This ordering phenomenon occurs in the large persistence time limit and is made possible only by the applied steady shear. Using a Fokker-Planck description with parameters that can be measured independently, we make testable predictions for the joint distribution of single-particle position and orientation. These predictions match well with the joint distribution measured from direct numerical simulation. Our results are of relevance for experiments exploring the rheological response of dense active colloids and jammed active granular matter systems.

14.
R Soc Open Sci ; 8(8): 202233, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34457327

RESUMO

Technological advancement has led to an increase in the number and type of trading venues and a diversification of goods traded. These changes have re-emphasized the importance of understanding the effects of market competition: does proliferation of trading venues and increased competition lead to dominance of a single market or coexistence of multiple markets? In this paper, we address these questions in a stylized model of zero-intelligence traders who make repeated decisions at which of three available markets to trade. We analyse the model numerically and analytically and find that the traders' decision parameters-memory length and how strongly decisions are based on past success-make the key difference between consolidated and fragmented steady states of the population of traders. All three markets coexist with equal shares of traders only when either learning is too weak and traders choose randomly, or when markets are identical. In the latter case, the population of traders fragments across the markets. With different markets, we note that market dominance is the more typical scenario. Overall we show that, contrary to previous research emphasizing the role of traders' heterogeneity, market coexistence can emerge simply as a consequence of co-adaptation of an initially homogeneous population of traders.

15.
J Phys Condens Matter ; 33(18)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33730708

RESUMO

We explore glassy dynamics of dense assemblies of soft particles that are self-propelled by active forces. These forces have a fixed amplitude and a propulsion direction that varies on a timescaleτp, the persistence timescale. Numerical simulations of such active glasses are computationally challenging when the dynamics is governed by large persistence times. We describe in detail a recently proposed scheme that allows one to study directly the dynamics in the large persistence time limit, on timescales around and well above the persistence time. We discuss the idea behind the proposed scheme, which we call 'activity-driven dynamics', as well as its numerical implementation. We establish that our prescription faithfully reproduces all dynamical quantities in the appropriate limitτp→ ∞. We deploy the approach to explore in detail the statistics of Eshelby-like plastic events in the steady state dynamics of a dense and intermittent active glass.

16.
Development ; 148(4)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33547135

RESUMO

During development, gene regulatory networks allocate cell fates by partitioning tissues into spatially organised domains of gene expression. How the sharp boundaries that delineate these gene expression patterns arise, despite the stochasticity associated with gene regulation, is poorly understood. We show, in the vertebrate neural tube, using perturbations of coding and regulatory regions, that the structure of the regulatory network contributes to boundary precision. This is achieved, not by reducing noise in individual genes, but by the configuration of the network modulating the ability of stochastic fluctuations to initiate gene expression changes. We use a computational screen to identify network properties that influence boundary precision, revealing two dynamical mechanisms by which small gene circuits attenuate the effect of noise in order to increase patterning precision. These results highlight design principles of gene regulatory networks that produce precise patterns of gene expression.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Animais , Biomarcadores , Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Camundongos , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Sequências Reguladoras de Ácido Ribonucleico
17.
Soft Matter ; 17(8): 2050-2061, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475129

RESUMO

The persistent motion of bacteria produces clusters with a stationary cluster size distribution (CSD). Here we develop a minimal model for bacteria in a narrow channel to assess the relative importance of motility diversity (i.e. polydispersity in motility parameters) and confinement. A mixture of run-and-tumble particles with a distribution of tumbling rates (denoted generically by α) is considered on a 1D lattice. Particles facing each other cross at constant rate, rendering the lattice quasi-1D. To isolate the role of diversity, the global average α stays fixed. For a binary mixture with no particle crossing, the average cluster size (Lc) increases with the diversity as lower-α particles trap higher-α ones for longer. At finite crossing rate, particles escape from the clusters sooner, making Lc smaller and the diversity less important, even though crossing can enhance demixing of particle types between the cluster and gas phases. If the crossing rate is increased further, the clusters become controlled by particle crossing. We also consider an experiment-based continuous distribution of tumbling rates, revealing similar physics. Using parameters fitted from experiments with Escherichia coli bacteria, we predict that the error in estimating Lc without accounting for polydispersity is around 60%. We discuss how to find a binary system with the same CSD as the fully polydisperse mixture. An effective theory is developed and shown to give accurate expressions for the CSD, the effective α, and the average fraction of mobile particles. We give reasons why our qualitative results are expected to be valid for other active matter models and discuss the changes that would result from polydispersity in the active speed rather than in the tumbling rate.


Assuntos
Escherichia coli , Movimento (Física)
18.
Phys Rev Lett ; 125(21): 218001, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274976

RESUMO

Recent experiments and simulations have revealed glassy features in, e.g., cytoplasm, living tissues and dense assemblies of self-propelled colloids. This leads to a fundamental question: how do these nonequilibrium (active) amorphous materials differ from conventional passive glasses, created by lowering temperature or increasing density? To address this we investigate the aging after a quench to an almost arrested state of a model active glass former, a Kob-Andersen glass in two dimensions. Each constituent particle is driven by a constant propulsion force whose direction diffuses over time. Using extensive molecular dynamics simulations we reveal rich aging behavior of this dense active matter system: short persistence times of the active forcing give effective thermal aging; in the opposite limit we find a two-step aging process with active athermal aging at short times and activity-driven aging at late times. We develop a dedicated simulation method that gives access to this longtime scaling regime for highly persistent active forces.

19.
J Chem Phys ; 153(2): 025101, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668933

RESUMO

We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g., protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the "extrinsic" sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and path integrals. The results provide a principled derivation of different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms, and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signaling network.


Assuntos
Modelos Biológicos , Mapas de Interação de Proteínas , Receptores ErbB/química , Receptores ErbB/metabolismo , Processos Estocásticos
20.
Phys Rev Lett ; 124(2): 025503, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004040

RESUMO

Experiments and simulations show that when an initially defect-free rigid crystal is subjected to deformation at a constant rate, irreversible plastic flow commences at the so-called yield point. The yield point is a weak function of the deformation rate, which is usually expressed as a power law with an extremely small nonuniversal exponent. We reanalyze a representative set of published data on nanometer sized, mostly defect-free Cu, Ni, and Au crystals in light of a recently proposed theory of yielding based on nucleation of stable stress-free regions inside the metastable rigid solid. The single relation derived here, which is not a power law, explains data covering 15 orders of magnitude in timescales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...