Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(3): 1268-1280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009927

RESUMO

PURPOSE: The aim of this work is to evaluate a new eight-channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state-of-the art dipole arrays. METHODS: First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi-tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. RESULTS: The developed eight-element coaxial dipole TxRx array coil showed up to 1.1times higher SAR-efficiency than a similar in geometry folded-end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. CONCLUSION: As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR-efficiency and provided for a more compact and robust alternative to the folded-end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra-high field.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Desenho de Equipamento , Cabeça/diagnóstico por imagem
2.
Nat Commun ; 12(1): 455, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469005

RESUMO

The technology of magnetic resonance imaging is developing towards higher magnetic fields to improve resolution and contrast. However, whole-body imaging at 7 T or even higher flux densities remains challenging due to wave interference, tissue inhomogeneities, and high RF power deposition. Nowadays, proper RF excitation of a human body in prostate and cardiac MRI is only possible to achieve by using phased arrays of antennas attached to the body (so-called surface coils). Due to safety concerns, the design of such coils aims at minimization of the local specific absorption rate (SAR), keeping the highest possible RF signal in the region of interest. Most previously demonstrated approaches were based on resonant structures such as e.g. dipoles, capacitively-loaded loops, TEM-line sections. In this study, we show that there is a better compromise between the transmit signal [Formula: see text] and the local SAR using non-resonant surface coils generating a low electric field in the proximity of their conductors. With this aim, we propose and experimentally demonstrate a leaky-wave antenna implemented as a periodically-slotted microstrip transmission line. Due to its non-resonant radiation, it induces only slightly over half the peak local SAR compared to a state-of-the-art dipole antenna but has the same transmit efficiency in prostate imaging at 7 T. Unlike other antennas for MRI, the leaky-wave antenna does not require to be tuned and matched when placed on a body, which makes it easy-to-use in prostate imaging at 7 T MRI.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagem Corporal Total/instrumentação , Absorção de Radiação , Radiação Eletromagnética , Desenho de Equipamento , Humanos , Campos Magnéticos/efeitos adversos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Imagem Corporal Total/efeitos adversos , Imagem Corporal Total/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...