Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 81(12): 3402-3414, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33687950

RESUMO

TRAIL can activate cell surface death receptors, resulting in potent tumor cell death via induction of the extrinsic apoptosis pathway. Eftozanermin alfa (ABBV-621) is a second generation TRAIL receptor agonist engineered as an IgG1-Fc mutant backbone linked to two sets of trimeric native single-chain TRAIL receptor binding domain monomers. This hexavalent agonistic fusion protein binds to the death-inducing DR4 and DR5 receptors with nanomolar affinity to drive on-target biological activity with enhanced caspase-8 aggregation and death-inducing signaling complex formation independent of FcγR-mediated cross-linking, and without clinical signs or pathologic evidence of toxicity in nonrodent species. ABBV-621 induced cell death in approximately 36% (45/126) of solid cancer cell lines in vitro at subnanomolar concentrations. An in vivo patient-derived xenograft (PDX) screen of ABBV-621 activity across 15 different tumor indications resulted in an overall response (OR) of 29% (47/162). Although DR4 (TNFSFR10A) and/or DR5 (TNFSFR10B) expression levels did not predict the level of response to ABBV-621 activity in vivo, KRAS mutations were associated with elevated TNFSFR10A and TNFSFR10B and were enriched in ABBV-621-responsive colorectal carcinoma PDX models. To build upon the OR of ABBV-621 monotherapy in colorectal cancer (45%; 10/22) and pancreatic cancer (35%; 7/20), we subsequently demonstrated that inherent resistance to ABBV-621 treatment could be overcome in combination with chemotherapeutics or with selective inhibitors of BCL-XL. In summary, these data provide a preclinical rationale for the ongoing phase 1 clinical trial (NCT03082209) evaluating the activity of ABBV-621 in patients with cancer. SIGNIFICANCE: This study describes the activity of a hexavalent TRAIL-receptor agonistic fusion protein in preclinical models of solid tumors that mechanistically distinguishes this molecular entity from other TRAIL-based therapeutics.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Fator IX/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Clin Cancer Res ; 26(13): 3371-3383, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32054729

RESUMO

PURPOSE: Patients with acute myeloid leukemia (AML) frequently do not respond to conventional therapies. Leukemic cell survival and treatment resistance have been attributed to the overexpression of B-cell lymphoma 2 (BCL-2) and aberrant DNA hypermethylation. In a phase Ib study in elderly patients with AML, combining the BCL-2 selective inhibitor venetoclax with hypomethylating agents 5-azacitidine (5-Aza) or decitabine resulted in 67% overall response rate; however, the underlying mechanism for this activity is unknown. EXPERIMENTAL DESIGN: We studied the consequences of combining two therapeutic agents, venetoclax and 5-Aza, in AML preclinical models and primary patient samples. We measured expression changes in the integrated stress response (ISR) and the BCL-2 family by Western blot and qPCR. Subsequently, we engineered PMAIP1 (NOXA)- and BBC3 (PUMA)-deficient AML cell lines using CRISPR-Cas9 methods to understand their respective roles in driving the venetoclax/5-Aza combinatorial activity. RESULTS: In this study, we demonstrate that venetoclax and 5-Aza act synergistically to kill AML cells in vitro and display combinatorial antitumor activity in vivo. We uncover a novel nonepigenetic mechanism for 5-Aza-induced apoptosis in AML cells through transcriptional induction of the proapoptotic BH3-only protein NOXA. This induction occurred within hours of treatment and was mediated by the ISR pathway. NOXA was detected in complex with antiapoptotic proteins, suggesting that 5-Aza may be "priming" the AML cells for venetoclax-induced apoptosis. PMAIP1 knockout confirmed its major role in driving venetoclax and 5-Aza synergy. CONCLUSIONS: These data provide a novel nonepigenetic mechanism of action for 5-Aza and its combinatorial activity with venetoclax through the ISR-mediated induction of PMAIP1.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Azacitidina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Mol Cancer Res ; 13(11): 1465-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26217019

RESUMO

UNLABELLED: Poly(ADP-ribose) polymerases (PARP1, -2, and -3) play important roles in DNA damage repair. As such, a number of PARP inhibitors are undergoing clinical development as anticancer therapies, particularly in tumors with DNA repair deficits and in combination with DNA-damaging agents. Preclinical evidence indicates that PARP inhibitors potentiate the cytotoxicity of DNA alkylating agents. It has been proposed that a major mechanism underlying this activity is the allosteric trapping of PARP1 at DNA single-strand breaks during base excision repair; however, direct evidence of allostery has not been reported. Here the data reveal that veliparib, olaparib, niraparib, and talazoparib (BMN-673) potentiate the cytotoxicity of alkylating agents. Consistent with this, all four drugs possess PARP1 trapping activity. Using biochemical and cellular approaches, we directly probe the trapping mechanism for an allosteric component. These studies indicate that trapping is due to catalytic inhibition and not allostery. The potency of PARP inhibitors with respect to trapping and catalytic inhibition is linearly correlated in biochemical systems but is nonlinear in cells. High-content imaging of γH2Ax levels suggests that this is attributable to differential potentiation of DNA damage in cells. Trapping potency is inversely correlated with tolerability when PARP inhibitors are combined with temozolomide in mouse xenograft studies. As a result, PARP inhibitors with dramatically different trapping potencies elicit comparable in vivo efficacy at maximum tolerated doses. Finally, the impact of trapping on tolerability and efficacy is likely to be context specific. IMPLICATIONS: Understanding the context-specific relationships of trapping and catalytic inhibition with both tolerability and efficacy will aid in determining the suitability of a PARP inhibitor for inclusion in a particular clinical regimen.


Assuntos
Benzimidazóis/farmacologia , Dano ao DNA/efeitos dos fármacos , Indazóis/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Tolerância a Medicamentos , Humanos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-22691797

RESUMO

Successfully forming ligand-protein complexes with specific compounds can be a significant challenge in supporting structure-based drug design for a given protein target. In this respect, an on-column ligand- and detergent-exchange method was developed to obtain ligand-protein complexes of an adamantane series of compounds with 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) after a variety of other complexation methods had failed. This report describes the on-column exchange method and an unexpected byproduct of the method in which artificial trimers were observed in the structures.


Assuntos
Cristalografia por Raios X/métodos , Desenho de Fármacos , Inibidores Enzimáticos/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Cristalografia por Raios X/instrumentação , Humanos , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína
5.
Clin Cancer Res ; 18(2): 510-23, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22128301

RESUMO

PURPOSE: PARP inhibitors are being developed as therapeutic agents for cancer. More than six compounds have entered clinical trials. The majority of these compounds are ß-nicotinamide adenine dinucleotide (NAD(+))-competitive inhibitors. One exception is iniparib, which has been proposed to be a noncompetitive PARP inhibitor. In this study, we compare the biologic activities of two different structural classes of NAD(+)-competitive compounds with iniparib and its C-nitroso metabolite. EXPERIMENTAL DESIGN: Two chemical series of NAD(+)-competitive PARP inhibitors, iniparib and its C-nitroso metabolite, were analyzed in enzymatic and cellular assays. Viability assays were carried out in MDA-MB-436 (BRCA1-deficient) and DLD1(-/-) (BRCA2-deficient) cells together with BRCA-proficient MDA-MB-231 and DLD1(+/+) cells. Capan-1 and B16F10 xenograft models were used to compare iniparib and veliparib in vivo. Mass spectrometry and the (3)H-labeling method were used to monitor the covalent modification of proteins. RESULTS: All NAD(+)-competitive inhibitors show robust activity in a PARP cellular assay, strongly potentiate the activity of temozolomide, and elicit robust cell killing in BRCA-deficient tumor cells in vitro and in vivo. Cell killing was associated with an induction of DNA damage. In contrast, neither iniparib nor its C-nitroso metabolite inhibited PARP enzymatic or cellular activity, potentiated temozolomide, or showed activity in a BRCA-deficient setting. We find that the nitroso metabolite of iniparib forms adducts with many cysteine-containing proteins. Furthermore, both iniparib and its nitroso metabolite form protein adducts nonspecifically in tumor cells. CONCLUSIONS: Iniparib nonselectively modifies cysteine-containing proteins in tumor cells, and the primary mechanism of action for iniparib is likely not via inhibition of PARP activity.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Cisteína/química , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proteína BRCA2/deficiência , Proteína BRCA2/genética , Benzamidas/química , Benzamidas/uso terapêutico , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Biol Chem ; 286(45): 38960-8, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21890637

RESUMO

The ubiquitin/proteasome pathway plays critical roles in virtually all aspects of cell biology. Enzymes of the ubiquitin pathway add (ligases) or remove (deubiquitinases) ubiquitin tags to or from their target proteins in a selective fashion. USP2a is a member of a subfamily of deubiquitinases, called ubiquitin-specific cysteine proteases (USPs). Although USP2a has been reported to be a bona fide oncogene that regulates the stability of MDM2, MDMX, and FAS, it is likely that there are other unidentified substrates for USP2a. In this study, we show that USP2a mediates mitotic progression by regulating the stability of Aurora-A. Through cell-based screening of a USP siRNA library, we discovered that knockdown of USP2a reduced the protein levels of Aurora-A. USP2a interacts with Aurora-A directly in vitro and in vivo. In addition, Aurora-A is a substrate for USP2a in vitro and in vivo. Our study provides a novel mechanism for the role of USP2a in mediating the stability of Aurora-A.


Assuntos
Endopeptidases/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina/metabolismo , Aurora Quinases , Endopeptidases/química , Endopeptidases/genética , Estabilidade Enzimática/fisiologia , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Ubiquitina/genética , Ubiquitina Tiolesterase
7.
Protein Expr Purif ; 65(1): 38-50, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19121396

RESUMO

TRPV1 is a ligand-gated cation channel that is involved in acute thermal nociception and neurogenic inflammation. By using the GP67 signal peptide, high levels of full-length human TRPV1 was expressed in High Five insect cells using the baculovirus expression system. The functional activity of the expressed TRPV1 was confirmed by whole-cell ligand-gated ion flux recordings in the presence of capsaicin and low pH and via specific ligand binding to the isolated cellular membranes. Efficient solubilization and purification protocols have resulted in milligram amounts of detergent-solubilized channel at 80-90% purity after Ni2+ IMAC chromatography and size exclusion chromatography. Western blot analysis of amino and carboxyl terminal domains and MS of tryptic digestions of purified protein confirmed the presence of the full-length human TRPV1. Specific ligand binding experiments confirmed the protein integrity of the purified human TRPV1.


Assuntos
Baculoviridae , Expressão Gênica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Canais de Cátion TRPV/biossíntese , Canais de Cátion TRPV/isolamento & purificação , Animais , Linhagem Celular , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Spodoptera , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
8.
Proc Natl Acad Sci U S A ; 104(19): 7875-80, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17470806

RESUMO

The pituitary adenylate cyclase-activating polypeptide (PACAP) receptor is a class II G protein-coupled receptor that contributes to many different cellular functions including neurotransmission, neuronal survival, and synaptic plasticity. The solution structure of the potent antagonist PACAP (residues 6'-38') complexed to the N-terminal extracellular (EC) domain of the human splice variant hPAC1-R-short (hPAC1-R(S)) was determined by NMR. The PACAP peptide adopts a helical conformation when bound to hPAC1-R(S) with a bend at residue A18' and makes extensive hydrophobic and electrostatic interactions along the exposed beta-sheet and interconnecting loops of the N-terminal EC domain. Mutagenesis data on both the peptide and the receptor delineate the critical interactions between the C terminus of the peptide and the C terminus of the EC domain that define the high affinity and specificity of hormone binding to hPAC1-R(S). These results present a structural basis for hPAC1-R(S) selectivity for PACAP versus the vasoactive intestinal peptide and also differentiate PACAP residues involved in binding to the N-terminal extracellular domain versus other parts of the full-length hPAC1-R(S) receptor. The structural, mutational, and binding data are consistent with a model for peptide binding in which the C terminus of the peptide hormone interacts almost exclusively with the N-terminal EC domain, whereas the central region makes contacts to both the N-terminal and other extracellular parts of the receptor, ultimately positioning the N terminus of the peptide to contact the transmembrane region and result in receptor activation.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Soluções
9.
J Med Chem ; 49(12): 3520-35, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759095

RESUMO

A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.


Assuntos
Fármacos Antiobesidade/síntese química , Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/síntese química , Nitrilas/síntese química , Inibidores de Proteases/síntese química , Pirrolidinas/síntese química , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/farmacologia , Glicemia/análise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade de Medicamentos , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Modelos Moleculares , Nitrilas/farmacocinética , Nitrilas/farmacologia , Inibidores de Proteases/farmacocinética , Inibidores de Proteases/farmacologia , Pirrolidinas/farmacocinética , Pirrolidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Estereoisomerismo , Relação Estrutura-Atividade
10.
Protein Sci ; 14(12): 3039-47, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16322581

RESUMO

In a broad genomics analysis to find novel protein targets for antibiotic discovery, MurF was identified as an essential gene product for Streptococcus pneumonia that catalyzes a critical reaction in the biosynthesis of the peptidoglycan in the formation of the cell wall. Lacking close relatives in mammalian biology, MurF presents attractive characteristics as a potential drug target. Initial screening of the Abbott small-molecule compound collection identified several compounds for further validation as pharmaceutical leads. Here we report the integrated efforts of NMR and X-ray crystallography, which reveal the multidomain structure of a MurF-inhibitor complex in a compact conformation that differs dramatically from related structures. The lead molecule is bound in the substrate-binding region and induces domain closure, suggestive of the domain arrangement for the as yet unobserved transition state conformation for MurF enzymes. The results form a basis for directed optimization of the compound lead by structure-based design to explore the suitability of MurF as a pharmaceutical target.


Assuntos
Inibidores Enzimáticos/química , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/química , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência , Especificidade por Substrato
11.
Oncogene ; 23(3): 835-8, 2004 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-14737118

RESUMO

Heterodimerization of antiapoptotic and pro-apoptotic Bcl-2 family of proteins provides an important mechanism for apoptosis regulation. Knowledge about key amino acids in the binding groove of native Bcl-2 contributing to this interaction will greatly facilitate the design of Bcl-2-specific inhibitors. There are two different Bcl-2 sequences, M13994 and M14745, in Genbank. Chimeric proteins Bcl-2(1) and Bcl-2(2) derived from the above sequences, although similar in structure, showed different binding affinities to Bak and Bad BH3 peptides (Petros et al., 2001). In this study, we show that the Bcl-2(1) sequence in normal and tumor human tissue samples differs from M13994 and M14745, and contains P59, T96, R110, S117 and G237. The actual sequence in the binding pocket matches the Bcl-2-Ig fusion sequence X06487, originally identified in a t(14:18) translocation of the Bcl-2 gene, associated with follicular lymphoma. The possible effects of the observed amino acid differences compared to M13994 and M14745 were investigated by combining structural data with fluorescence anisotropy. G110R substitution confers on Bcl-2(1) substantially increased binding affinity to Bak, Bad and Bax BH3 peptides, demonstrating that R110 is a key contributor to the BH3 binding affinity of Bcl-2. Although NMR structure did not predict R110 involvement in binding to these BH3 peptides, fluorescence anisotropy data clearly points to a critical role for this residue in binding to pro-apoptotic Bcl-2 family members.


Assuntos
Apoptose , Bases de Dados de Ácidos Nucleicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...