Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 27(10): 2414-2434, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29740906

RESUMO

To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus-growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher-attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower-attine lineages. Higher-attine fungi form two clades, Clade-A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade-B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade-A fungi because some leafcutter species ranging across South America cultivate Clade-B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade-B fungi because some Trachymyrmex species cultivate Clade-A fungi and other Trachymyrmex species cultivate fungi known so far only from lower-attine ants; (iii) in some locations, single higher-attine ant species or closely related cryptic species cultivate both Clade-A and Clade-B fungi; and (iv) ant-fungus co-evolution among higher-attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade-A or Clade-B fungi, sustaining with either cultivar-type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade-A or Clade-B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade-A), but must derive from ant-fungus synergisms and unique ant adaptations.


Assuntos
Agaricales/fisiologia , Formigas/classificação , Filogenia , Simbiose , Agaricales/classificação , Animais , Formigas/microbiologia , Formigas/fisiologia , Comportamento Animal
2.
Mol Ecol ; 26(24): 6921-6937, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29134724

RESUMO

Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and widespread Clade-A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade-A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus-growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.


Assuntos
Agaricales/genética , Formigas/microbiologia , Coevolução Biológica , Animais , Formigas/classificação , América Central , Marcadores Genéticos , Genética Populacional , Genótipo , Repetições de Microssatélites , América do Norte , Filogenia , Filogeografia , América do Sul , Simbiose
3.
R Soc Open Sci ; 2(9): 150257, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26473050

RESUMO

Fungus-gardening (attine) ants grow fungus for food in protected gardens, which contain beneficial, auxiliary microbes, but also microbes harmful to gardens. Among these potentially pathogenic microorganisms, the most consistently isolated are fungi in the genus Escovopsis, which are thought to co-evolve with ants and their cultivar in a tripartite model. To test clade-to-clade correspondence between Escovopsis and ants in the higher attine symbiosis (including leaf-cutting and non-leaf-cutting ants), we amassed a geographically comprehensive collection of Escovopsis from Mexico to southern Brazil, and reconstructed the corresponding Escovopsis phylogeny. Contrary to previous analyses reporting phylogenetic divergence between Escovopsis from leafcutters and Trachymyrmex ants (non-leafcutter), we found no evidence for such specialization; rather, gardens from leafcutters and non-leafcutters genera can sometimes be infected by closely related strains of Escovopsis, suggesting switches at higher phylogenetic levels than previously reported within the higher attine symbiosis. Analyses identified rare Escovopsis strains that might represent biogeographically restricted endemic species. Phylogenetic patterns correspond to morphological variation of vesicle type (hyphal structures supporting spore-bearing cells), separating Escovopsis with phylogenetically derived cylindrical vesicles from ancestral Escovopsis with globose vesicles. The new phylogenetic insights provide an improved basis for future taxonomic and ecological studies of Escovopsis.

4.
PLoS One ; 10(1): e0112067, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25617836

RESUMO

Since the formal description of fungi in the genus Escovopsis in 1990, only a few studies have focused on the systematics of this group. For more than two decades, only two Escovopsis species were described; however, in 2013, three additional Escovopsis species were formally described along with the genus Escovopsioides, both found exclusively in attine ant gardens. During a survey for Escovopsis species in gardens of the lower attine ant Mycetophylax morschi in Brazil, we found four strains belonging to the pink-colored Escovopsis clade. Careful examination of these strains revealed significant morphological differences when compared to previously described species of Escovopsis and Escovopsioides. Based on the type of conidiogenesis (sympodial), as well as morphology of conidiogenous cells (percurrent), non-vesiculated conidiophores, and DNA sequences, we describe the four new strains as a new species, Escovopsis kreiselii sp. nov. Phylogenetic analyses using three nuclear markers (Large subunit RNA; translation elongation factor 1-alpha; and internal transcribed spacer) from the new strains as well as available sequences in public databases confirmed that all known fungi infecting attine ant gardens comprise a monophyletic group within the Hypocreaceae family, with very diverse morphological characteristics. Specifically, Escovopsis kreiselii is likely associated with gardens of lower-attine ants and its pathogenicity remains uncertain.


Assuntos
Formigas/fisiologia , Hypocreales/fisiologia , Filogenia , Animais , Formigas/microbiologia , Brasil , DNA Fúngico/química , Marcadores Genéticos , Hypocreales/citologia , Hypocreales/genética , Análise de Sequência de DNA , Simbiose
5.
Environ Microbiol Rep ; 6(4): 339-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24992532

RESUMO

Attine ants maintain an association with antibiotic-producing Actinobacteria found on their integuments. Evidence supports these bacteria as auxiliary symbionts that help ants to defend the fungus gardens against pathogens. Using Pseudonocardia strains isolated from Trachymyrmex ants, we tested whether the inhibitory capabilities of such strains are restricted to Escovopsis parasites that infect gardens of this ant genus. Twelve Pseudonocardia strains were tested in in vitro bioassays against Escovopsis strains derived from fungus gardens of Trachymyrmex (n = 1) and leaf-cutting ants (n = 3). Overall, significant differences were observed in the mycelial growth among each Escovopsis strain in the presence of Pseudonocardia. Particularly, Escovopsis from Acromyrmex and Trachymyrmex were the most inhibited strains in comparison to Escovopsis isolated from Atta. This result suggests that Pseudonocardia isolated from Trachymyrmex possibly secrete antimicrobial compounds effective against diverse Escovopsis strains. The fact that Trachymyrmex ants harbour Pseudonocardia strains with broad spectrum of activity and its defensive role on attine gardens are discussed.


Assuntos
Actinomycetales/isolamento & purificação , Actinomycetales/fisiologia , Antibiose , Formigas/microbiologia , Hypocreales/crescimento & desenvolvimento , Simbiose , Animais , Bioensaio , Micélio/crescimento & desenvolvimento
6.
Biomed Res Int ; 2013: 835081, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23586060

RESUMO

After decades of intensive searching for antimicrobial compounds derived from actinobacteria, the frequency of isolation of new molecules has decreased. To cope with this concern, studies have focused on the exploitation of actinobacteria from unexplored environments and actinobacteria symbionts of plants and animals. In this study, twenty-four actinobacteria strains isolated from workers of Trachymyrmex ants were evaluated for antifungal activity towards a variety of Candida species. Results revealed that seven strains inhibited the tested Candida species. Streptomyces sp. TD025 presented potent and broad spectrum of inhibition of Candida and was selected for the isolation of bioactive molecules. From liquid shake culture of this bacterium, we isolated the rare antimycin urauchimycins A and B. For the first time, these molecules were evaluated for antifungal activity against medically important Candida species. Both antimycins showed antifungal activity, especially urauchimycin B. This compound inhibited the growth of all Candida species tested, with minimum inhibitory concentration values equivalent to the antifungal nystatin. Our results concur with the predictions that the attine ant-microbe symbiosis may be a source of bioactive metabolites for biotechnology and medical applications.


Assuntos
Anti-Infecciosos/farmacologia , Formigas/microbiologia , Candida/efeitos dos fármacos , Actinobacteria/química , Actinobacteria/isolamento & purificação , Animais , Anti-Infecciosos/isolamento & purificação , Antimicina A/análogos & derivados , Antimicina A/isolamento & purificação , Antimicina A/farmacologia , Formigas/química , Candida/patogenicidade , Simbiose
7.
J Insect Sci ; 11: 12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21526926

RESUMO

The genus Mycetagroicus is perhaps the least known of all fungus-growing ant genera, having been first described in 2001 from museum specimens. A recent molecular phylogenetic analysis of the fungus-growing ants demonstrated that Mycetagroicus is the sister to all higher attine ants (Trachymyrmex, Sericomyrmex, Acromyrmex, Pseudoatta, and Atta), making it of extreme importance for understanding the transition between lower and higher attine agriculture. Four nests of Mycetagroicus cerradensis near Uberlândia, Minas Gerais, Brazil were excavated, and fungus chambers for one were located at a depth of 3.5 meters. Based on its lack of gongylidia (hyphal-tip swellings typical of higher attine cultivars), and a phylogenetic analysis of the ITS rDNA gene region, M. cerradensis cultivates a lower attine fungus in Clade 2 of lower attine (G3) fungi. This finding refines a previous estimate for the origin of higher attine agriculture, an event that can now be dated at approximately 21-25 mya in the ancestor of extant species of Trachymyrmex and Sericomyrmex.


Assuntos
Formigas/genética , Formigas/fisiologia , Evolução Biológica , Fungos/crescimento & desenvolvimento , Comportamento de Nidação/fisiologia , Filogenia , Simbiose , Animais , Formigas/anatomia & histologia , Sequência de Bases , Brasil , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
8.
Proc Biol Sci ; 278(1721): 3050-9, 2011 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21389026

RESUMO

Tropical leaf-cutter ants cultivate the fungus Attamyces bromatificus in a many-to-one, diffuse coevolutionary relationship where ant and fungal partners re-associate frequently over time. To evaluate whether ant-Attamyces coevolution is more specific (tighter) in peripheral populations, we characterized the host-specificities of Attamyces genotypes at their northern, subtropical range limits (southern USA, Mexico and Cuba). Population-genetic patterns of northern Attamyces reveal features that have so far not been observed in the diffusely coevolving, tropical ant-Attamyces associations. These unique features include (i) cases of one-to-one ant-Attamyces specialization that tighten coevolution at the northern frontier; (ii) distributions of genetically identical Attamyces clones over large areas (up to 81 000 km(2), approx. the area of Ireland, Austria or Panama); (iii) admixture rates between Attamyces lineages that appear lower in northern than in tropical populations; and (iv) long-distance gene flow of Attamyces across a dispersal barrier for leaf-cutter ants (ocean between mainland North America and Cuba). The latter suggests that Attamyces fungi may occasionally disperse independently of the ants, contrary to the traditional assumption that Attamyces fungi depend entirely on leaf-cutter queens for dispersal. Peripheral populations in Argentina or at mid-elevation sites in the Andes may reveal additional regional variants in ant-Attamyces coevolution. Studies of such populations are most likely to inform models of coextinctions of obligate mutualistic partners that are doubly stressed by habitat marginality and by environmental change.


Assuntos
Agaricales/genética , Formigas/genética , Formigas/microbiologia , Evolução Biológica , Simbiose , Agaricales/fisiologia , Animais , Formigas/fisiologia , Cuba , Feminino , Variação Genética , Genótipo , México , Especificidade da Espécie , Estados Unidos
9.
Proc Natl Acad Sci U S A ; 108(10): 4053-6, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368106

RESUMO

The obligate mutualism between leafcutter ants and their Attamyces fungi originated 8 to 12 million years ago in the tropics, but extends today also into temperate regions in South and North America. The northernmost leafcutter ant Atta texana sustains fungiculture during winter temperatures that would harm the cold-sensitive Attamyces cultivars of tropical leafcutter ants. Cold-tolerance of Attamyces cultivars increases with winter harshness along a south-to-north temperature gradient across the range of A. texana, indicating selection for cold-tolerant Attamyces variants along the temperature cline. Ecological niche modeling corroborates winter temperature as a key range-limiting factor impeding northward expansion of A. texana. The northernmost A. texana populations are able to sustain fungiculture throughout winter because of their cold-adapted fungi and because of seasonal, vertical garden relocation (maintaining gardens deep in the ground in winter to protect them from extreme cold, then moving gardens to warmer, shallow depths in spring). Although the origin of leafcutter fungiculture was an evolutionary breakthrough that revolutionized the food niche of tropical fungus-growing ants, the original adaptations of this host-microbe symbiosis to tropical temperatures and the dependence on cold-sensitive fungal symbionts eventually constrained expansion into temperate habitats. Evolution of cold-tolerant fungi within the symbiosis relaxed constraints on winter fungiculture at the northern frontier of the leafcutter ant distribution, thereby expanding the ecological niche of an obligate host-microbe symbiosis.


Assuntos
Formigas/fisiologia , Evolução Biológica , Temperatura Baixa , Fungos/fisiologia , Estações do Ano , Simbiose , Animais , Formigas/parasitologia
10.
Mol Phylogenet Evol ; 51(3): 427-37, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19041407

RESUMO

Leafcutting ants of the genus Atta are the most conspicuous members of the tribe Attini, the fungus-growing ants. Atta species have long attracted the attention of naturalists, and have since become a common model system for the study of complex insect societies as well as for the study of coevolutionary dynamics due to their numerous interactions with fungi and other microbes. Nevertheless, systematics and taxonomy of the 15 species in the genus Atta have proven challenging, due in part to the extreme levels of worker polymorphism these species display, leading to disagreements about the validity of as many as five different subgenera and calling into question the monophyly of the genus. Here, we use DNA sequence information from fragments of three mitochondrial genes (COI, tRNA leucine and COII) and one nuclear gene (EF1-alphaF1), totaling 1070 base pairs, to reconstruct the phylogenetic relationships of Atta species using maximum parsimony, maximum likelihood and Bayesian inference techniques. Our results provide support for monophyly of the genus Atta, and suggest that the genus is divided into four monophyletic groups, which correspond to four of the five previously erected Atta subgenera: Atta sensu stricto and Archeatta, each with species composition identical to earlier proposals; Neoatta and Epiatta, with major differences in species composition from earlier proposals. The current geographic ranges of these species suggest that the historical separation of South America from Central and North America has played a role in speciation within this genus.


Assuntos
Formigas/genética , Evolução Molecular , Filogenia , Animais , Formigas/classificação , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Genes de Insetos , Especiação Genética , Geografia , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
11.
PLoS One ; 3(7): e2738, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18648512

RESUMO

The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene--or both--have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area.


Assuntos
Variação Genética , Animais , Formigas , Evolução Biológica , Evolução Molecular , Especiação Genética , Genética Populacional , Geografia , Interferon Tipo I/metabolismo , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Dinâmica Populacional , América do Sul , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...