Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 19(8): 1149-59, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21827950

RESUMO

Endosomal sorting complexes required for transport (ESCRT) recognize ubiquitinated cargo and catalyze diverse budding processes including multivesicular body biogenesis, enveloped virus egress, and cytokinesis. We present the crystal structure of an N-terminal fragment of the deubiquitinating enzyme AMSH (AMSHΔC) in complex with the C-terminal region of ESCRT-III CHMP3 (CHMP3ΔN). AMSHΔC folds into an elongated 90 Å long helical assembly that includes an unusual MIT domain. CHMP3ΔN is unstructured in solution and helical in complex with AMSHΔC, revealing a novel MIT domain interacting motif (MIM) that does not overlap with the CHMP1-AMSH binding site. ITC and SPR measurements demonstrate an unusual high-affinity MIM-MIT interaction. Structural analysis suggests a regulatory role for the N-terminal helical segment of AMSHΔC and its destabilization leads to a loss of function during HIV-1 budding. Our results indicate a tight coupling of ESCRT-III CHMP3 and AMSH functions and provide insight into the regulation of ESCRT-III.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Multiproteicos/química , Fragmentos de Peptídeos/química , Ubiquitina Tiolesterase/química , Sequência de Aminoácidos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HEK293 , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ubiquitina Tiolesterase/metabolismo , Liberação de Vírus
2.
Biochem Soc Trans ; 37(Pt 1): 156-60, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143622

RESUMO

ESCRT-III (endosomal sorting complex required for transport III) is required for the formation and abscission of intraluminal endosomal vesicles, which gives rise to multivesicular bodies, budding of some enveloped viruses and cytokinesis. ESCRT-III is composed of 11 members in humans, which, except for one, correspond to the six ESCRT-III-like proteins in yeast. At least CHMP (charged multivesicular body protein) 2A and CHMP3 assemble into helical tubular structures that provide a platform for membrane interaction and VPS (vacuolar protein sorting) 4-catalysed effects leading to disassembly of ESCRT-III CHMP2A-CHMP3 polymers in vitro. Progress towards the understanding of the structures and function of ESCRT-III, its activation, its regulation by accessory factors and its role in abscission of membrane enveloped structures in concert with VPS4 are discussed.


Assuntos
Endossomos/química , Endossomos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Animais , Biopolímeros/metabolismo , Humanos , Ligação Proteica , Transporte Proteico
3.
J Mol Biol ; 378(4): 818-27, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18395747

RESUMO

Endosomal sorting complexes required for transport (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) are selectively recruited to cellular membranes to exert their function in diverse processes, such as multivesicular body biogenesis, enveloped virus budding, and cytokinesis. ESCRT-III is composed of members of the charged multivesicular body protein (CHMP) family--cytosolic proteins that are targeted to membranes via yet unknown signals. Membrane targeting is thought to result in a membrane-associated protein network that presumably acts at a late budding step. Here we provide structural evidence based on small-angle X-ray scattering data that ESCRT-III CHMP3 can adopt two conformations in solution: a closed globular form that most likely represents the cytosolic conformation and an open extended conformation that might represent the activated form of CHMP3. Both the closed and open conformations of CHMP3 interact with AMSH with high affinity. Although the C-terminal region of CHMP3 is required for AMSH interaction, a peptide thereof reveals only weak binding to AMSH, suggesting that other regions of CHMP3 contribute to the high-affinity interaction. Thus, AMSH, including its MIT (microtubule interacting and transport) domain, interacts with ESCRT-III CHMP3 differently from reported Vps4 MIT domain-CHMP protein interactions.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Calorimetria , Dicroísmo Circular , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Estrutura Terciária de Proteína , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Org Biomol Chem ; 4(7): 1252-60, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16557313

RESUMO

A technique is presented for the high throughput generation of families of recombinant biocatalysts sourced from prokaryotic genomes, providing rapid access to the naturally evolved diversity of enzyme specificity for biocatalyst discovery. The method exploits a novel ligation independent cloning strategy, based on the locally engineered vector pET-YSBLIC and has been used for the rapid generation of a suite of expression plasmids containing genes encoding a family of six Baeyer-Villiger monooxygenases (BVMOs) from Mycobacterium tuberculosis H37Rv (MTb). The six resultant recombinant strains of E. coli B834 (DE3) expressing the genes were assayed for oxygenating activity in respect of the target reaction; the resolution of bicyclo[3.2.0]hept-2-en-6-one. The analysis of biotransformations catalysed by growing cells of E. coli was complicated by the production of indole in the reaction mixtures, possibly resulting from the in vivo activity of E. coli tryptophanase. Four of the recombinant strains expressing different BVMOs catalysed the oxidation of one or more of four screening substrates, well above controls that had been transformed with the re-ligated parent vector. One of the recombinant strains, E. coli B834 (DE3) pDB5, expressing the Rv3049c gene from MTb, was found to effectively resolve the target substrate, yielding a 19% yield of (1R, 5S)-(+)-bicyclo[3.2.0]hept-2-en-6-one with >95% enantiomeric excess in a 4 L fermentation reaction.


Assuntos
Bactérias/genética , Clonagem Molecular/métodos , Genoma Bacteriano , Oxigenases de Função Mista/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Bactérias/enzimologia , Proteínas de Bactérias/química , Catálise , Cinética , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...