Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339194

RESUMO

Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-ß (TGF-ß) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.


Assuntos
Antineoplásicos , Benzamidas , Lesão Pulmonar , Fibrose Pulmonar , Pirazóis , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Ácido Clorídrico/toxicidade , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais/metabolismo , Antineoplásicos/efeitos adversos , Gefitinibe/efeitos adversos , Proteínas de Choque Térmico HSP90/metabolismo
2.
Pathogens ; 12(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839435

RESUMO

Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, pharmaceutical companies and research institutions have been actively working to develop vaccines, and the mass roll-out of vaccinations against COVID-19 began in January 2021. At the same time, during lockdowns, the consumption of alcoholic beverages increased. During the peak of vaccination, consumption remained at high levels around the world, despite the gradual relaxation of quarantine restrictions. Two of the popular queries on search engines were whether it is safe to drink alcohol after vaccination and whether this will affect the effectiveness of vaccines. Over the past two years, many studies have been published suggesting that excessive drinking not only worsens the course of an acute respiratory distress syndrome caused by the SARS-CoV-2 virus but can also exacerbate post-COVID-19 syndrome. Despite all sorts of online speculation, there is no specific scientific data on alcohol-induced complications after vaccination in the literature. Most of the published vaccine clinical trials do not include groups of patients with a history of alcohol-use disorders. This review analyzed the well-known and new mechanisms of action of COVID-19 vaccines on the immune system and the effects of alcohol and its metabolites on these mechanisms.

3.
SLAS Discov ; 28(6): 249-254, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36796645

RESUMO

The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Pandemias , Virginia , Desenvolvimento de Medicamentos , Descoberta de Drogas , Síndrome do Desconforto Respiratório/tratamento farmacológico
4.
Front Pharmacol ; 13: 1034464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419627

RESUMO

Exposure to high concentrations of hydrochloric acid (HCl) can lead to severe acute and chronic lung injury. In the aftermath of accidental spills, victims may be treated for the acute symptoms, but the chronic injury is often overlooked. We have developed a mouse model of acute and chronic lung injury, in which the peak of acute lung injury occurs on the day 4 after HCl exposure. We have also demonstrated that HSP90 inhibitors are effective antidotes when administered starting 24 h after HCl. In this study we examined the hypothesis that the novel oral HSP90 inhibitor TAS-116 can effectively ameliorate HCl-induced lung injury even when treatment starts at the peak of the acute injury, as late as 96 h after HCl. C57BI/6J mice were intratracheally instilled with 0.1N HCl. After 24 or 96 h, TAS-116 treatment began (3.5, 7 or 14 mg/kg, 5 times per week, p. o.) for either 2,3 or 4 or weeks. TAS-116 moderated the HCl-induced alveolar inflammation, as reflected in the reduction of white blood cells and total protein content in bronchoalveolar lavage fluid (BALF), overexpression of NLRP3 inflammasome, and inhibited the activation of pro-fibrotic pathways. Furthermore, TAS-116 normalized lung mechanics and decreased the deposition of extracellular matrix proteins in the lungs of mice exposed to HCl. Delayed and shortened treatment with TAS-116, successfully blocked the adverse chronic effects associated with acute exposure to HCl.

5.
Am J Pathol ; 192(7): 990-1000, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483427

RESUMO

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, alcohol consumption increased markedly. Nearly one in four adults reported drinking more alcohol to cope with stress. Chronic alcohol abuse is now recognized as a factor complicating the course of acute respiratory distress syndrome and increasing mortality. To investigate the mechanisms behind this interaction, a combined acute respiratory distress syndrome and chronic alcohol abuse mouse model was developed by intratracheally instilling the subunit 1 (S1) of SARS-CoV-2 spike protein (S1SP) in K18-human angiotensin-converting enzyme 2 (ACE2) transgenic mice that express the human ACE2 receptor for SARS-CoV-2 and were kept on an ethanol diet. Seventy-two hours after S1SP instillation, mice on an ethanol diet showed a strong decrease in body weight, a dramatic increase in white blood cell content of bronchoalveolar lavage fluid, and an augmented cytokine storm, compared with S1SP-treated mice on a control diet. Histologic examination of lung tissue showed abnormal recruitment of immune cells in the alveolar space, abnormal parenchymal architecture, and worsening Ashcroft score in S1SP- and alcohol-treated animals. Along with the activation of proinflammatory biomarkers [NF-κB, STAT3, NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome], lung tissue homogenates from mice on an alcohol diet showed overexpression of ACE2 compared with mice on a control diet. This model could be useful for the development of therapeutic approaches against alcohol-exacerbated coronavirus disease 2019.


Assuntos
Lesão Pulmonar Aguda , Alcoolismo , Enzima de Conversão de Angiotensina 2 , COVID-19 , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Animais , COVID-19/patologia , Etanol/efeitos adversos , Humanos , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
6.
Front Physiol ; 13: 812199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35388292

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 5 million deaths worldwide. Multiple reports indicate that the endothelium is involved during SARS-Cov-2-related disease (COVID-19). Indeed, COVID-19 patients display increased thrombophilia with arterial and venous embolism and lung microcapillary thrombotic disease as major determinants of deaths. The pathophysiology of endothelial dysfunction in COVID-19 is not completely understood. We have investigated the role of subunit 1 of the SARS-CoV-2 spike protein (S1SP) in eliciting endothelial barrier dysfunction, characterized dose and time relationships, and tested the hypothesis that heat shock protein 90 (HSP90) inhibitors would prevent and repair such injury. S1SP activated (phosphorylated) IKBα, STAT3, and AKT and reduced the expression of intercellular junctional proteins, occludin, and VE-cadherin. HSP90 inhibitors (AT13387 and AUY-922) prevented endothelial barrier dysfunction and hyperpermeability and reduced IKBα and AKT activation. These two inhibitors also blocked S1SP-mediated barrier dysfunction and loss of VE-cadherin. These data suggest that spike protein subunit 1 can elicit, by itself, direct injury to the endothelium and suggest a role of HSP90 inhibitors in preserving endothelial functionality.

7.
Am J Pathol ; 192(6): 837-846, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351468

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a dramatic disease without cure. The US Food and Drug Administration-approved drugs, pirfenidone and nintedanib, only slow disease progression. The clinical investigation of novel therapeutic approaches for IPF is an unmet clinical need. Nucleotide-binding oligomerization domain-like receptor or NOD-like receptors are pattern recognition receptors capable of binding a large variety of stress factors. NLR family pyrin domain-containing protein 3 (NLRP3), once activated, promotes IL-1ß, IL-18 production, and innate immune responses. Multiple reports indicate that the inflammasome NLRP3 is overactivated in IPF patients, leading to increased production of class I IL and collagens. Similarly, data from animal models of pulmonary fibrosis confirm the role of NLRP3 in the development of chronic lung injury and pulmonary fibrosis. This report provides a review of the evidence of NLRP3 activation in IPF and of NLRP3 inhibition in different animal models of fibrosis, and highlights the recent advances in direct and indirect NLRP3 inhibitors.


Assuntos
Fibrose Pulmonar Idiopática , Inflamassomos , Animais , Proteínas de Transporte/metabolismo , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Domínio Pirina
8.
Cells ; 11(6)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326496

RESUMO

Hydrochloric acid (HCl) exposure causes asthma-like conditions, reactive airways dysfunction syndrome, and pulmonary fibrosis. Heat Shock Protein 90 (HSP90) is a molecular chaperone that regulates multiple cellular processes. HSP90 inhibitors are undergoing clinical trials for cancer and are also being studied in various pre-clinical settings for their anti-inflammatory and anti-fibrotic effects. Here we investigated the ability of the heat shock protein 90 (HSP90) inhibitor AT13387 to prevent chronic lung injury induced by exposure to HCl in vivo and its protective role in the endothelial barrier in vitro. We instilled C57Bl/6J mice with 0.1N HCl (2 µL/g body weight, intratracheally) and after 24 h began treatment with vehicle or AT13387 (10 or 15 mg/kg, SC), administered 3×/week; we analyzed histological, functional, and molecular markers 30 days after HCl. In addition, we monitored transendothelial electrical resistance (TER) and protein expression in a monolayer of human lung microvascular endothelial cells (HLMVEC) exposed to HCl (0.02 N) and treated with vehicle or AT13387 (2 µM). HCl provoked persistent alveolar inflammation; activation of profibrotic pathways (MAPK/ERK, HSP90); increased deposition of collagen, fibronectin and elastin; histological evidence of fibrosis; and a decline in lung function reflected in a downward shift in pressure-volume curves, increased respiratory system resistance (Rrs), elastance (Ers), tissue damping (G), and hyperresponsiveness to methacholine. Treatment with 15 mg/kg AT13387reduced alveolar inflammation, fibrosis, and NLRP3 staining; blocked activation of ERK and HSP90; and attenuated the deposition of collagen and the development of chronic lung injury and airway hyperreactivity. In vitro, AT13387 prevented HCl-induced loss of barrier function and AKT, ERK, and ROCK1 activation, and restored HSP70 and cofilin expression. The HSP90 inhibitor, AT13387, represents a promising drug candidate for chronic lung injury that can be administered subcutaneously in the field, and at low, non-toxic doses.


Assuntos
Antineoplásicos , Lesão Pulmonar , Fibrose Pulmonar , Animais , Antineoplásicos/farmacologia , Benzamidas , Colágeno/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ácido Clorídrico/efeitos adversos , Inflamação/patologia , Isoindóis , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle
9.
Nutrients ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684599

RESUMO

We previously reported that female mice exhibit protection against chemically induced pulmonary fibrosis and suggested a potential role of estrogen. Phytoestrogens act, at least in part, via stimulation of estrogen receptors; furthermore, compared to residents of Western countries, residents of East Asian countries consume higher amounts of phytoestrogens and exhibit lower rates of pulmonary fibrosis. Therefore, we tested the hypothesis that dietary phytoestrogens ameliorate the severity of experimentally induced pulmonary fibrosis. Male mice placed on either regular soybean diet or phytoestrogen-free diet were instilled with 0.1 N HCl to provoke pulmonary fibrosis. Thirty days later, lung mechanics were measured as indices of lung function and bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed for biomarkers of fibrosis. Mice on phytoestrogen-free diet demonstrated increased mortality and stronger signs of chronic lung injury and pulmonary fibrosis, as reflected in the expression of collagen, extracellular matrix deposition, histology, and lung mechanics, compared to mice on regular diet. We conclude that dietary phytoestrogens play an important role in the pathogenesis of pulmonary fibrosis and suggest that phytoestrogens (e.g., genistein) may be useful as part of a therapeutic regimen against hydrochloric acid-induced lung fibrosis and chronic lung dysfunction.


Assuntos
Dieta , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Fitoestrógenos/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Doença Crônica , Proteínas da Matriz Extracelular/metabolismo , Ácido Clorídrico , Inflamação/patologia , Contagem de Leucócitos , Pulmão/fisiopatologia , Lesão Pulmonar/complicações , Lesão Pulmonar/mortalidade , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fitoestrógenos/farmacologia , Fibrose Pulmonar/complicações , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
10.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445540

RESUMO

Exposure to hydrochloric acid (HCl) represents a threat to public health. Children may inhale higher doses and develop greater injury because of their smaller airways and faster respiratory rate. We have developed a mouse model of pediatric exposure to HCl by intratracheally instilling p24 mice (mice 24 days old; 8-10 g) with 2 µL/g 0.1 N HCl, and compared the profile of lung injury to that in HCl-instilled adults (10 weeks old; 25-30 g) and their age-matched saline controls. After 30 days, alveolar inflammation was observed with increased proteinosis and mononuclear cells in the bronchoalveolar lavage fluid (BALF) in both HCl-instilled groups. Young p24 animals-but not adults-exhibited higher NLR family pyrin domain containing 3 (NLRP3) inflammasome levels. Increased amounts of Transforming Growth Factor-ß (TGF-ß) mRNA and its intracellular canonical and non-canonical pathways (p-Smad2 and p-ERK) were found in the lungs of both young and adult HCl-instilled mice. Constitutive age-related differences were observed in the levels of heat shock protein family (HSP70 and HSP90). HCl equally provoked the deposition of collagen and fibronectin; however, significant age-dependent differences were observed in the increase in elastin and tenascin C mRNA. HCl induced pulmonary fibrosis with an increased Ashcroft score, which was higher in adults, and a reduction in alveolar Mean Alveolar Linear Intercept (MALI). Young mice developed increased Newtonian resistance (Rn) and lower PV loops, while adults showed a higher respiratory system resistance and elastance. This data indicate that young p24 mice can suffer long-term complications from a single exposure to HCl, and can develop chronic lung injury characterized by a stronger persistent inflammation and lesser fibrotic pattern, mostly in the airways, differently from adults. Further data are required to characterize HCl time- and dose-dependent injury in young animals and to identify new key-molecular targets.


Assuntos
Lesão Pulmonar Aguda/patologia , Envelhecimento , Líquido da Lavagem Broncoalveolar/química , Ácido Clorídrico/toxicidade , Inflamação/patologia , Fibrose Pulmonar/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente
11.
Cells ; 10(6)2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199261

RESUMO

Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction in primary cultures of human lung microvascular endothelial cells (HLMVEC), defined the involved molecular pathways, and tested the potentially beneficial effects of Heat Shock Protein 90 (HSP90) inhibitors. HCl impaired barrier function in a time- and concentration-dependent manner and was associated with activation of Protein Kinase B (AKT), Ras homolog family member A (RhoA) and myosin light chain 2 (MLC2), as well as loss of plasmalemmal VE-cadherin, rearrangement of cortical actin, and appearance of inter-endothelial gaps. Pre-treatment or post-treatment of HLMVEC with AUY-922, a third-generation HSP90 inhibitor, prevented and restored HCl-induced endothelial barrier dysfunction. AUY-922 increased the expression of HSP70 and inhibited the activation (phosphorylation) of extracellular-signal regulated kinase (ERK) and AKT. AUY-922 also prevented the HCl-induced activation of RhoA and MLC2 and the internalization of plasmalemmal VE-cadherin. We conclude that, by increasing the expression of cytoprotective proteins, interfering with actomyosin contractility, and enhancing the expression of junction proteins, inhibition of HSP90 may represent a useful approach for the management of HCl-induced endothelial dysfunction and acute lung injury.


Assuntos
Células Endoteliais/metabolismo , Ácido Clorídrico/toxicidade , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microvasos/metabolismo , Miosinas Cardíacas/metabolismo , Células Endoteliais/patologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoxazóis/farmacologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Microvasos/patologia , Cadeias Leves de Miosina/metabolismo , Resorcinóis/farmacologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L477-L484, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34156871

RESUMO

Acute lung injury (ALI) leading to acute respiratory distress syndrome is the major cause of COVID-19 lethality. Cell entry of SARS-CoV-2 occurs via the interaction between its surface spike protein (SP) and angiotensin-converting enzyme-2 (ACE2). It is unknown if the viral spike protein alone is capable of altering lung vascular permeability in the lungs or producing lung injury in vivo. To that end, we intratracheally instilled the S1 subunit of SARS-CoV-2 spike protein (S1SP) in K18-hACE2 transgenic mice that overexpress human ACE2 and examined signs of COVID-19-associated lung injury 72 h later. Controls included K18-hACE2 mice that received saline or the intact SP and wild-type (WT) mice that received S1SP. K18-hACE2 mice instilled with S1SP exhibited a decline in body weight, dramatically increased white blood cells and protein concentrations in bronchoalveolar lavage fluid (BALF), upregulation of multiple inflammatory cytokines in BALF and serum, histological evidence of lung injury, and activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways in the lung. K18-hACE2 mice that received either saline or SP exhibited little or no evidence of lung injury. WT mice that received S1SP exhibited a milder form of COVID-19 symptoms, compared with the K18-hACE2 mice. Furthermore, S1SP, but not SP, decreased cultured human pulmonary microvascular transendothelial resistance (TER) and barrier function. This is the first demonstration of a COVID-19-like response by an essential virus-encoded protein by SARS-CoV-2 in vivo. This model of COVID-19-induced ALI may assist in the investigation of new therapeutic approaches for the management of COVID-19 and other coronaviruses.


Assuntos
Lesão Pulmonar Aguda/patologia , COVID-19/complicações , Permeabilidade da Membrana Celular , Células Endoteliais/patologia , Pulmão/patologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subunidades Proteicas , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
13.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072833

RESUMO

We developed two models of chemically induced chronic lung injury and pulmonary fibrosis in mice (intratracheally administered hydrochloric acid (HCl) and intratracheally administered nitrogen mustard (NM)) and investigated male-female differences. Female mice exhibited higher 30-day survival and less weight loss than male mice. Thirty days after the instillation of either HCl or NM, bronchoalveolar lavage fluid displayed a persistent, mild inflammatory response, but with higher white blood cell numbers and total protein content in males vs. females. Furthermore, females exhibited less collagen deposition, milder pulmonary fibrosis, and lower Ashcroft scores. After instillation of either HCl or NM, all animals displayed increased values of phosphorylated (activated) Heat Shock Protein 90, which plays a crucial role in the alveolar wound-healing processes; however, females presented lower activation of both transforming growth factor-ß (TGF-ß) signaling pathways: ERK and SMAD. We propose that female mice are protected from chronic complications of a single exposure to either HCl or NM through a lesser activation of TGF-ß and downstream signaling. The understanding of the molecular mechanisms that confer a protective effect in females could help develop new, gender-specific therapeutics for IPF.


Assuntos
Colágeno/genética , Proteínas de Choque Térmico HSP90/genética , Fibrose Pulmonar Idiopática/genética , Fator de Crescimento Transformador beta/genética , Animais , Feminino , Regulação da Expressão Gênica/genética , Humanos , Ácido Clorídrico/toxicidade , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mecloretamina/toxicidade , Camundongos , Proteínas Smad/genética
14.
J Pharmacol Exp Ther ; 375(2): 286-295, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943478

RESUMO

Sepsis and septic shock are among the most common causes of death in the intensive care unit; advanced therapeutic approaches are thus urgently needed. Vascular hyperpermeability represents a major manifestation of severe sepsis and is responsible for the ensuing organ dysfunction and failure. Vasopressin V1A receptor (V1AR) agonists have shown promise in the treatment of sepsis, increasing blood pressure, and reducing vascular hyperpermeability. The effects of the selective V1AR-selective agonist selepressin have been investigated in an in vitro model of thrombin-, vascular endothelial growth factor-, angiopoietin 2-, and lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial hyperpermeability. Results suggest that selepressin counteracts the effects of all four endothelial barrier disruptors in a concentration-dependent manner, as reflected in real-time measurements of vascular permeability by means of transendothelial electrical resistance. Further, selepressin protected the barrier integrity against the LPS-mediated corruption of the endothelial monolayer integrity, as captured by VE-cadherin and actin staining. The protective effects of selepressin were abolished by silencing of the vasopressin V1AR, as well as by atosiban, an antagonist of the human V1AR. p53 appears to be involved in mediating these palliative effects, since selepressin strongly induced its expression levels, suppressed the inflammatory RhoA/myosin light chain2 pathway, and triggered the barrier-protective effects of the GTPase Rac1. We conclude that V1AR-selective agonists, such as selepressin, may prove useful in the improvement of endothelial barrier function in the management of severe sepsis. SIGNIFICANCE STATEMENT: A cardinal sign of sepsis, a serious disease with significant mortality and no specific treatment, is pulmonary endothelial barrier dysfunction that leads to pulmonary edema. Here, we present evidence that in cultured human lung microvascular endothelial cells, the synthetic, selective vasopressin V1A receptor agonist selepressin protects against endothelial barrier dysfunction caused by four different edemogenic agents, suggesting a potential role of selepressin in the clinical management of sepsis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores de Vasopressinas/agonistas , Caderinas/metabolismo , Miosinas Cardíacas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cadeias Leves de Miosina/metabolismo , Receptores de Vasopressinas/metabolismo , Trombina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722485

RESUMO

Idiopathic Pulmonary fibrosis (IPF) is a catastrophic disease with poor outcomes and limited pharmacological approaches. Heat shock protein 90 (HSP90) has been recently involved in the wound-healing pathological response that leads to collagen deposition in patients with IPF and its inhibition represents an exciting drug target against the development of pulmonary fibrosis. Under physiological conditions, HSP90 guarantees proteostasis through the refolding of damaged proteins and the degradation of irreversibly damaged ones. Additionally, its inhibition, by specific HSP90 inhibitors (e.g., 17 AAG, 17 DAG, and AUY-922) has proven beneficial in different preclinical models of human disease. HSP90 inhibition modulates a complex subset of kinases and interferes with intracellular signaling pathways and proteome regulation. In this review, we evaluated the current evidence and rationale for the use of HSP90 inhibitors in the treatment of pulmonary fibrosis, discussed the intracellular pathways involved, described the limitations of the current understanding and provided insights for future research.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Fibrose Pulmonar Idiopática , Proteoma/metabolismo , Proteostase , Transdução de Sinais , Animais , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia
16.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635192

RESUMO

Increased levels of heat shock protein 90 (HSP90) have been recently implicated in the pathogenesis of pulmonary fibrosis and the use of HSP90 inhibitors constitutes a potential therapeutic approach. Similarly, acute exposure to nitrogen mustard (NM) is related to the development of chronic lung injury driven by TNF-α, TGF-ß, ERK and HSP90. Thus, we developed a murine model of NM-induced pulmonary fibrosis by instilling C57BI/6J mice with 0.625 mg/kg mechlorethamine hydrochloride. After 24 h, mice began receiving AUY-922, a second generation HSP90 inhibitor, at 1 mg/kg 2 times per week or 2 mg/kg 3 times per week, for either 10 or 30 days. AUY-922 suppressed the NM-induced sustained inflammation, as reflected in the reduction of leukocyte and protein concentrations in bronchoalveolar lavage fluid (BALF), and inhibited the activation of pro-fibrotic biomarkers, ERK and HSP90. Furthermore, AUY-922 maintained normal lung function, decreased the overexpression and accumulation of extracellular matrix proteins, and dramatically reduced histologic evidence of fibrosis in the lungs of mice exposed to NM. The HSP90 inhibitor, AUY-922, successfully blocked the adverse effects associated with acute exposures to NM, representing a promising approach against NM-induced pulmonary fibrosis.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/prevenção & controle , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Resorcinóis/farmacologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Mecloretamina/antagonistas & inibidores , Mecloretamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/patologia
17.
Exp Lung Res ; 46(6): 203-216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32400213

RESUMO

Aim/Purpose: Exposure to high levels of hydrochloric acid (HCl) is associated with severe lung injury including both acute inflammation and chronic lung disease, which leads to the development of pulmonary fibrosis. Currently, there are no specific therapeutic agents for HCl-induced lung injury. Heat shock protein 90 (HSP90) has been implicated in the pathogenesis of pulmonary fibrosis. Thus, we have used a murine model of intra-tracheal acid instillation to investigate the antidotal effects of AUY-922, a small molecule HSP90 inhibitor, already in clinical trials for various types of cancer, against HCl-induced chronic lung injury and pulmonary fibrosis.Methods: HCl (0.1 N, 2 µl/g body weight) was instilled into male C57Bl/6J mice at day 0. After 24 h, mice began receiving 1 mg/kg AUY-922, 2x/week for 15 or 30 days.Results: AUY-922 suppressed the HCl-induced sustained inflammation, as reflected in the reduction of leukocyte and protein concentrations in bronchoalveolar lavage fluid, and inhibited the activation of pro-fibrotic biomarkers, ERK and HSP90. Furthermore, AUY-922 improved lung function, decreased the overexpression and accumulation of extracellular matrix proteins and dramatically reduced histologic evidence of fibrosis in the lungs of mice exposed to HCl.Conclusions: We conclude that AUY-922, and possibly other HSP90 inhibitors, successfully block the adverse effects associated with acute exposures to HCl and may represent an effective antidote against HCl-induced chronic lung injury and fibrosis.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Ácido Clorídrico/farmacologia , Isoxazóis/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Resorcinóis/farmacologia , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo
18.
Inhal Toxicol ; 32(4): 141-154, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32362214

RESUMO

Objective: Sulfur mustards are toxic agents used as a chemical warfare in the twentieth century. Exposure to nitrogen mustards (NM), their more water-soluble analogs, is associated with respiratory, dermatological, neurological, and systemic symptoms whose severity depends on dose and length of contact. Long-term effects of acute inhalation have been related to the development of chronic lung injury and pulmonary fibrosis whose precise mechanisms and potential antidotes are yet to be discovered.Materials and methods: We have developed a model of NM-induced pulmonary fibrosis by intratracheally instilling mechlorethamine hydrochloride into C57Bl/6J male mice.Results and Discussion: Following mechlorethamine exposure, strong early and milder late inflammatory responses were observed. Initially, the number of white blood cells and levels of protein and pro-inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) increased, followed by increases in the number of macrophages and the levels of transforming growth factor-ß (TGF-ß), a pro-fibrotic mediator. Analysis of lung homogenates revealed increased phosphorylation of pro-fibrotic biomarkers, serine/threonine-selective protein kinases (p-ERK), and heat shock protein 90 (P-HSP90) at 10 and 30 days after exposure. Total collagen expression and deposition of extracellular matrix proteins also increased. Lung function measurements demonstrated the presence of both obstructive and restrictive disease in agreement with evidence of increased lower airway peribronchial collagen deposition and parenchymal fibrosis.Conclusions: We conclude that the mouse represents a useful model of NM-induced acute lung injury and chronic pulmonary fibrosis, the latter driven by the overexpression of TGF-ß, p-ERK, and P-HSP90. This model may prove useful in the pre-clinical development of antidotes and other countermeasures.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Substâncias para a Guerra Química , Modelos Animais de Doenças , Mecloretamina , Fibrose Pulmonar/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Doença Crônica , Citocinas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo
19.
Inhal Toxicol ; 31(4): 147-160, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31232121

RESUMO

Objective: Accidental exposure to hydrochloric acid (HCl) is associated with acute lung injury in humans, development of long-term chronic airway obstruction, and fibrosis. However, the mechanisms responsible for the progression to pulmonary fibrosis remain unclear. We utilized a mouse model of progressive lung injury from a single exposure to HCl to investigate the effects of HCl on the lower respiratory tract. Materials and methods: HCl (0.05-0.3 N) or saline was injected intratracheally into male C57Bl/6J mice. At 1, 4, 10 and 30 days post instillation, bronchoalveolar lavage fluid (BALF) and lung tissues were collected and examined for multiple outcomes. Results and discussion: We observed an early inflammatory response and a late mild inflammation present even at 30 d post HCl exposure. Mice treated with HCl exhibited higher total leukocyte and protein levels in the BALF compared to the vehicle group. This was characterized by increased number of neutrophils, monocytes, and lymphocytes as well as pro-inflammatory cytokines during the first 4 d of injury. The late inflammatory response exhibited a predominant presence of mononuclear cells, increased permeability to protein, and higher levels of the pro-fibrotic mediator TGFß. Pro-fibrotic protein biomarkers, phosphorylated ERK, and HSP90, were also overexpressed at 10 and 30 d following HCl exposure. In vivo lung function measurements demonstrated lung dysfunction and chronic lung injury associated with increased lung hydroxyproline content and increased expression of extracellular matrix (ECM) proteins. The acute inflammation and severity of fibrosis increased in HCl-concentration dependent manner. Conclusions: Our findings suggest that the initial inflammatory response and pro-fibrotic biomarker upregulation may be linked to the progression of pulmonary fibrosis and airway dysfunction and may represent valuable therapeutic targets.


Assuntos
Poluentes Atmosféricos/toxicidade , Ácido Clorídrico/toxicidade , Exposição por Inalação/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/análise , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Função Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...