Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37215042

RESUMO

Thioredoxin Reductase (TrxR) is a key enzyme in hydroperoxide detoxification through peroxiredoxin enzymes and in thiol-mediated redox regulation of cell signaling. Because cancer cells produce increased steady-state levels of reactive oxygen species (ROS; i.e., superoxide and hydrogen peroxide), TrxR is currently being targeted in clinical trials using the anti-rheumatic drug, auranofin (AF). AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the lung atypical (neuroendocrine tumor) NET cell line H727. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, a multi-kinase inhibitor that was shown to decrease intracellular glutathione. The pharmacokinetic and pharmacodynamic properties of AF treatment in a mouse SCLC xenograft model was examined to maximize inhibition of TrxR activity without causing toxicity. AF was administered intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1 to 5 days in mice with DMS273 xenografts. Plasma levels of AF were 10-20 µM (determined by mass spectrometry of gold) and the optimal inhibition of TrxR (50 %) was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. When this daily AF treatment was extended for 14 days a significant prolongation of median survival from 19 to 23 days (p=0.04, N=30 controls, 28 AF) was observed without causing changes in animal bodyweight, CBCs, bone marrow toxicity, blood urea nitrogen, or creatinine. These results show that AF is an effective inhibitor of TrxR both in vitro and in vivo in SCLC, capable of sensitizing NETs and SCLC to sorafenib, and supports the hypothesis that AF could be used as an adjuvant therapy with agents known to induce disruptions in thiol metabolism to enhance therapeutic efficacy.

2.
Radiat Res ; 200(5): 456-461, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758035

RESUMO

Diffuse intrinsic pontine gliomas (DIPG) are an aggressive type of pediatric brain tumor with a very high mortality rate. Surgery has a limited role given the tumor's location. Palliative radiation therapy alleviates symptoms and prolongs survival, but median survival remains less than 1 year. There is no clear role for chemotherapy in DIPGs as trials adding chemotherapy to palliative radiation therapy have failed to improve survival compared to radiation alone. Thus, there is a critical need to identify tissue-specific radiosensitizers to improve clinical outcomes for patients with DIPGs. Pharmacologic (high dose) ascorbate (P-AscH-) is a promising anticancer therapy that sensitizes human tumors, including adult high-grade gliomas, to radiation by acting selectively as a generator of hydrogen peroxide (H2O2) in cancer cells. In this study we demonstrate that in contrast to adult glioma models, P-AscH- does not radiosensitize DIPG. DIPG cells were sensitive to bolus of H2O2 but have faster H2O2 removal rates than GBM models which are radiosensitized by P-AscH-. These data support the hypothesis that P-AscH- does not enhance DIPG radiosensitivity, likely due to a robust capacity to detoxify and remove hydroperoxides.


Assuntos
Antineoplásicos , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Adulto , Humanos , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/patologia , Neoplasias do Tronco Encefálico/radioterapia , Neoplasias do Tronco Encefálico/patologia , Peróxidos/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/uso terapêutico , Glioma/radioterapia , Glioma/patologia , Antineoplásicos/uso terapêutico
3.
Part Fibre Toxicol ; 18(1): 37, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649580

RESUMO

BACKGROUND: Precisely how silver nanoparticles (AgNPs) kill mammalian cells still is not fully understood. It is not clear if AgNP-induced damage differs from silver cation (Ag+), nor is it known how AgNP damage is transmitted from cell membranes, including endosomes, to other organelles. Cells can differ in relative sensitivity to AgNPs or Ag+, which adds another layer of complexity to identifying specific mechanisms of action. Therefore, we determined if there were specific effects of AgNPs that differed from Ag+ in cells with high or low sensitivity to either toxicant. METHODS: Cells were exposed to intact AgNPs, Ag+, or defined mixtures of AgNPs with Ag+, and viability was assessed. The level of dissolved Ag+ in AgNP suspensions was determined using inductively coupled plasma mass spectrometry. Changes in reactive oxygen species following AgNP or Ag+ exposure were quantified, and treatment with catalase, an enzyme that catalyzes the decomposition of H2O2 to water and oxygen, was used to determine selectively the contribution of H2O2 to AgNP and Ag+ induced cell death. Lipid peroxides, formation of 4-hydroxynonenol protein adducts, protein thiol oxidation, protein aggregation, and activation of the integrated stress response after AgNP or Ag+ exposure were quantified. Lastly, cell membrane integrity and indications of apoptosis or necrosis in AgNP and Ag+ treated cells were examined by flow cytometry. RESULTS: We identified AgNPs with negligible Ag+ contamination. We found that SUM159 cells, which are a triple-negative breast cancer cell line, were more sensitive to AgNP exposure less sensitive to Ag+ compared to iMECs, an immortalized, breast epithelial cell line. This indicates that high sensitivity to AgNPs was not predictive of similar sensitivity to Ag+. Exposure to AgNPs increased protein thiol oxidation, misfolded proteins, and activation of the integrated stress response in AgNP sensitive SUM159 cells but not in iMEC cells. In contrast, Ag+ cause similar damage in Ag+ sensitive iMEC cells but not in SUM159 cells. Both Ag+ and AgNP exposure increased H2O2 levels; however, treatment with catalase rescued cells from Ag+ cytotoxicity but not from AgNPs. Instead, our data support a mechanism by which damage from AgNP exposure propagates through cells by generation of lipid peroxides, subsequent lipid peroxide mediated oxidation of proteins, and via generation of 4-hydroxynonenal (4-HNE) protein adducts. CONCLUSIONS: There are distinct differences in the responses of cells to AgNPs and Ag+. Specifically, AgNPs drive cell death through lipid peroxidation leading to proteotoxicity and necrotic cell death, whereas Ag+ increases H2O2, which drives oxidative stress and apoptotic cell death. This work identifies a previously unknown mechanism by which AgNPs kill mammalian cells that is not dependent upon the contribution of Ag+ released in extracellular media. Understanding precisely which factors drive the toxicity of AgNPs is essential for biomedical applications such as cancer therapy, and of importance to identifying consequences of unintended exposures.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Cátions , Morte Celular , Peróxido de Hidrogênio/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade
4.
Free Radic Biol Med ; 150: 1-11, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032663

RESUMO

Therapies for lung cancer patients initially elicit desirable responses, but the presence of hypoxia and drug resistant cells within tumors ultimately lead to treatment failure. Disulfiram (DSF) is an FDA approved, copper chelating agent that can target oxidative metabolic frailties in cancer vs. normal cells and be repurposed as an adjuvant to cancer therapy. Clonogenic survival assays showed that DSF (50-150 nM) combined with physiological levels of Cu (15 µM CuSO4) was selectively toxic to H292 NSCLC cells vs. normal human bronchial epithelial cells (HBEC). Furthermore, cancer cell toxicity was exacerbated at 1% O2, relative to 4 or 21% O2. This selective toxicity of DSF/Cu was associated with differential Cu ionophore capabilities. DSF/Cu treatment caused a >20-fold increase in cellular Cu in NSCLCs, with nearly two-fold higher Cu present in NSCLCs vs. HBECs and in cancer cells at 1% O2vs. 21% O2. DSF toxicity was shown to be dependent on the retention of Cu as well as oxidative stress mechanisms, including the production of superoxide, peroxide, lipid peroxidation, and mitochondrial damage. DSF was also shown to selectively (relative to HBECs) enhance radiation and chemotherapy-induced NSCLC killing and reduce radiation and chemotherapy resistance in hypoxia. Finally, DSF decreased xenograft tumor growth in vivo when combined with radiation and carboplatin. These results support the hypothesis that DSF could be a promising adjuvant to enhance cancer therapy based on its apparent ability to selectively target fundamental differences in cancer cell oxidative metabolism.


Assuntos
Dissulfiram , Neoplasias Pulmonares , Linhagem Celular Tumoral , Cobre , Dissulfiram/farmacologia , Humanos , Hipóxia , Neoplasias Pulmonares/tratamento farmacológico , Oxirredução
5.
Genetics ; 213(4): 1373-1386, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619446

RESUMO

Under conditions in which budding yeast form colonies and then undergo meiosis/sporulation, the resulting colonies are organized such that a sharply defined layer of meiotic cells overlays a layer of unsporulated cells termed "feeder cells." This differentiation pattern requires activation of both the Rlm1/cell-wall integrity pathway and the Rim101/alkaline-response pathway. In the current study, we analyzed the connection between these two signaling pathways in regulating colony development by determining expression patterns and cell-autonomy relationships. We present evidence that two parallel cell-nonautonomous positive-feedback loops are active in colony patterning, an Rlm1-Slt2 loop active in feeder cells and an Rim101-Ime1 loop active in meiotic cells. The Rlm1-Slt2 loop is expressed first and subsequently activates the Rim101-Ime1 loop through a cell-nonautonomous mechanism. Once activated, each feedback loop activates the cell fate specific to its colony region. At the same time, cell-autonomous mechanisms inhibit ectopic fates within these regions. In addition, once the second loop is active, it represses the first loop through a cell-nonautonomous mechanism. Linked cell-nonautonomous positive-feedback loops, by amplifying small differences in microenvironments, may be a general mechanism for pattern formation in yeast and other organisms.


Assuntos
Retroalimentação Fisiológica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alelos , Epistasia Genética , Concentração de Íons de Hidrogênio , Meiose , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/fisiologia
6.
Cell Rep ; 28(10): 2608-2619.e6, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484072

RESUMO

Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Glutationa/biossíntese , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Especificidade de Órgãos , Transcriptoma/genética
7.
Free Radic Biol Med ; 108: 354-361, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389407

RESUMO

D-penicillamine (DPEN), a copper chelator, has been used in the treatment of Wilson's disease, cystinuria, and rheumatoid arthritis. Recent evidence suggests that DPEN in combination with biologically relevant copper (Cu) concentrations generates H2O2 in cancer cell cultures, but the effects of this on cancer cell responses to ionizing radiation and chemotherapy are unknown. Increased steady-state levels of H2O2 were detected in MB231 breast and H1299 lung cancer cells following treatment with DPEN (100µM) and copper sulfate (15µM). Clonogenic survival demonstrated that DPEN-induced cancer cell toxicity was dependent on Cu and was significantly enhanced by depletion of glutathione [using buthionine sulfoximine (BSO)] as well as inhibition of thioredoxin reductase [using Auranofin (Au)] prior to exposure. Treatment with catalase inhibited DPEN toxicity confirming H2O2 as the toxic species. Furthermore, pretreating cancer cells with iron sucrose enhanced DPEN toxicity while treating with deferoxamine, an Fe chelator that inhibits redox cycling, inhibited DPEN toxicity. Importantly, DPEN also demonstrated selective toxicity in human breast and lung cancer cells, relative to normal untransformed human lung or mammary epithelial cells and enhanced cancer cell killing when combined with ionizing radiation or carboplatin. Consistent with the selective cancer cell toxicity, normal untransformed human lung epithelial cells had significantly lower labile iron pools than lung cancer cells. These results support the hypothesis that DPEN mediates selective cancer cell killing as well as radio-chemo-sensitization by a mechanism involving metal ion catalyzed H2O2-mediated oxidative stress and suggest that DPEN could be repurposed as an adjuvant in conventional cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quelantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Penicilamina/farmacologia , Auranofina/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Butionina Sulfoximina/farmacologia , Carboplatina/farmacologia , Catalase/metabolismo , Linhagem Celular Tumoral , Cobre/química , Cobre/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Estresse Oxidativo , Radiação , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
8.
Radiat Res ; 186(4): 385-395, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27643875

RESUMO

The goal of this study was to determine if depletion of glutathione (GSH) and inhibition of thioredoxin (Trx) reductase (TrxR) activity could enhance radiation responses in human breast cancer stem cells by a mechanism involving thiol-dependent oxidative stress. The following were used to inhibit GSH and Trx metabolism: buthionine sulfoximine (BSO), a GSH synthesis inhibitor; sulfasalazine (SSZ), an inhibitor of xc- cysteine/glutamate antiporter; auranofin (Au), a thioredoxin reductase inhibitor; or 2-AAPA, a GSH-reductase inhibitor. Clonogenic survival, Matrigel assays, flow cytometry cancer stem cell assays (CD44+CD24-ESA+ or ALDH1) and human tumor xenograft models were used to determine the antitumor activity of drug and radiation combinations. Combined inhibition of GSH and Trx metabolism enhanced cancer cell clonogenic killing and radiation responses in human breast and pancreatic cancer cells via a mechanism that could be inhibited by N-acetylcysteine (NAC). Au, BSO and radiation also significantly decreased breast cancer cell migration and invasion in a thiol-dependent manner that could be inhibited by NAC. In addition, pretreating cells with Au sensitized breast cancer stem cell populations to radiation in vitro as determined by CD44+CD24-ESA+ or ALDH1. Combined administration of Au and BSO, given prior to irradiation, significantly increased the survival of mice with human breast cancer xenografts, and decreased the number of ALDH1+ cancer stem cells. These results indicate that combined inhibition of GSH- and Trx-dependent thiol metabolism using pharmacologically relevant agents can enhance responses of human breast cancer stem cells to radiation both in vitro and in vivo.


Assuntos
Neoplasias da Mama/patologia , Glutationa/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Radiossensibilizantes/farmacologia , Tiorredoxinas/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Auranofina/farmacologia , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica , Dano ao DNA , Interações Medicamentosas , Feminino , Glutationa/biossíntese , Humanos , Camundongos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Sulfassalazina/farmacologia , Análise de Sobrevida , Tiocarbamatos/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...