Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(7): 2718-2724, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357842

RESUMO

Coherent coupling of defect spins with surrounding nuclei along with the endowment to read out the latter are basic requirements for an application in quantum technologies. We show that negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) meet these prerequisites. We demonstrate Hahn-echo coherence of the VB- spin with a characteristic decay time Tcoh = 15 µs, close to the theoretically predicted limit of 18 µs for defects in hBN. Elongation of the coherence time up to 36 µs is demonstrated by means of the Carr-Purcell-Meiboom-Gill decoupling technique. Modulation of the Hahn-echo decay is shown to be induced by coherent coupling of the VB- spin with the three nearest 14N nuclei via a nuclear quadrupole interaction of 2.11 MHz. DFT calculation confirms that the electron-nuclear coupling is confined to the defective layer and stays almost unchanged with a transition from the bulk to the single layer.

2.
Nanomaterials (Basel) ; 11(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067260

RESUMO

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB-). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB- centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB- centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB- spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB- spin embedded in the hBN as a probe.

3.
Phys Rev Lett ; 108(22): 226402, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003631

RESUMO

We report the realization of the optically induced inverse population of the ground-state spin sublevels of the silicon vacancies (V(Si)) in silicon carbide (SiC) at room temperature. The data show that the probed silicon vacancy spin ensemble can be prepared in a coherent superposition of the spin states. Rabi nutations persist for more than 80 µs. Two opposite schemes of the optical alignment of the populations between the ground-state spin sublevels of the silicon vacancy upon illumination with unpolarized light are realized in 4H- and 6H-SiC at room temperature. These altogether make the silicon vacancy in SiC a very favorable defect for spintronics, quantum information processing, and magnetometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...