Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29909, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707469

RESUMO

According to information from the World Health Organization, the world has experienced about 430 million cases of COVID-19, a world-wide health crisis caused by the SARS-CoV-2 virus. This outbreak, originating from China in 2019, has led to nearly 6 million deaths worldwide. As the number of confirmed infections continues to rise, the need for cutting-edge techniques that can detect SARS-CoV-2 infections early and accurately has become more critical. To address this, the Federal Drug Administration (FDA) has issued emergency use authorizations (EUAs) for a wide range of diagnostic tools. These include tests based on detecting nucleic acids and antigen-antibody reactions. The quantitative real-time reverse transcription PCR (qRT-PCR) assay stands out as the gold standard for early virus detection. However, despite its accuracy, qRT-PCR has limitations, such as complex testing protocols and a risk of false negatives, which drive the continuous improvement in nucleic acid and serological testing approaches. The emergence of highly contagious variants of the coronavirus, such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), has increased the need for tests that can specifically identify these mutations. This article explores both nucleic acid-based and antigen-antibody serological assays, assessing the performance of recently approved FDA tests and those documented in scientific research, especially in identifying new coronavirus strains.

2.
BMC Complement Med Ther ; 24(1): 49, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254071

RESUMO

BACKGROUND: The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS: In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS: Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION: This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Colchicina/farmacologia , Pilocarpina , Influenza Humana/tratamento farmacológico , Simulação de Acoplamento Molecular , Estações do Ano , Compostos Fitoquímicos/farmacologia , Atropina , Antivirais/farmacologia
3.
Heliyon ; 10(1): e23222, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163229

RESUMO

The ongoing challenge of managing coronaviruses, particularly SARS-CoV-2, necessitates the development of effective antiviral agents. This study introduces Lactulose octasulfate (LOS), a sulfated disaccharide, demonstrating significant antiviral activity against key coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-CoV. We hypothesize LOS operates extracellularly, targeting the ACE2-S-protein axis, due to its low cellular permeability. Our investigation combines biolayer interferometry (BLI), isothermal titration calorimetry (ITC)-based experiments with in silico studies, revealing LOS's ability to reduce SARS-CoV-2's RBD's affinity for ACE2 in a dose-dependent manner, and bind tightly to ACE2 without inhibiting its enzymatic activity. Gaussian accelerated molecular dynamics simulations (GaMD) further supported these findings, illustrating LOS's potential as a broad-spectrum antiviral agent against current and future coronavirus strains, meriting in vivo and clinical exploration.

4.
Int J Biol Macromol ; 255: 128025, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979739

RESUMO

In the present study, we characterized Bakuchiol (Bak) as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm formation. Upon extensive in vitro investigations, Bak was found to suppress the P. aeruginosa biofilm formation (75.5 % inhibition) and its associated virulence factor e.g., pyocyanin and rhamnolipids (% of inhibition = 71.5 % and 66.9 %, respectively). Upon LuxR-type receptors assay, Bak was found to selectively inhibit P. aeruginosa's LasR in a dose-dependent manner. Further in-depth molecular investigations (e.g., sedimentation velocity and thermal shift assays) revealed that Bak destabilized LasR upon binding and disrupted its functioning quaternary structure (i.e., the functioning dimeric form). The subsequent modeling and molecular dynamics (MD) simulations explained in more molecular detail how Bak interacts with LasR and how it can induce its dimeric form disruption. In conclusion, our study identified Bak as a potent and specific LasR antagonist that should be widely used as a chemical probe of QS in P. aeruginosa, offering new insights into LasR antagonism processes. The new findings shed light on the cryptic world of LuxR-type QS in this important opportunistic pathogen.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Biofilmes , Pseudomonas/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Transcrição , Transativadores/metabolismo , Antibacterianos/farmacologia
5.
Biomolecules ; 13(12)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136554

RESUMO

COVID-19, caused by the SARS-CoV-2 virus, manifests with a wide range of clinical symptoms that vary from mild respiratory issues to severe respiratory distress. To effectively manage and predict the outcomes of the disease, it is important to understand the molecular mechanisms underlying its severity. This study focuses on analyzing and comparing the expression patterns of microRNAs (miRNAs) in serum, urine, and nasopharyngeal samples from patients with mild, moderate, and severe COVID-19. The aim is to identify potential associations with disease progression and discover suitable markers for diagnosis and prognosis. Our findings indicate the consistent upregulation of miR-21, miR-146a, and miR-155 in urine, serum, and nasopharyngeal samples from patients with mild COVID-19. In moderate cases, there were more significant changes in miRNA expression compared to mild cases. Specifically, miR-let-7 demonstrated upregulation, while miR-146b exhibited downregulation. The most notable alterations in miRNA expression profiles were observed in severe COVID-19 cases, with a significant upregulation of miR-223. Moreover, our analysis using Receiver-operating characteristic (ROC) curves demonstrated that miR-155, miR-let-7, and miR-223 exhibited high sensitivity and specificity, suggesting their potential as biomarkers for distinguishing COVID-19 patients from healthy individuals. Overall, this comparative analysis revealed distinct patterns in miRNA expression. The overlapping expression patterns of miRNAs in urine, serum, and nasopharyngeal samples suggest their potential utility in discriminating disease status.


Assuntos
COVID-19 , MicroRNAs , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , MicroRNAs/metabolismo , Biomarcadores , Curva ROC
6.
Biomolecules ; 13(11)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-38002255

RESUMO

In the present study, norlobaridone (NBD) was isolated from Parmotrema and then evaluated as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm development. This phenolic natural product was found to reduce P. aeruginosa biofilm formation (64.6% inhibition) and its related virulence factors, such as pyocyanin and rhamnolipids (% inhibition = 61.1% and 55%, respectively). In vitro assays inhibitory effects against a number of known LuxR-type receptors revealed that NBD was able to specifically block P. aeruginosa's LasR in a dose-dependent manner. Further molecular studies (e.g., sedimentation velocity and thermal shift assays) demonstrated that NBD destabilized LasR upon binding and damaged its functional quaternary structure (i.e., the functional dimeric form). The use of modelling and molecular dynamics (MD) simulations also allowed us to further understand its interaction with LasR, and how this can disrupt its dimeric form. Finally, our findings show that NBD is a powerful and specific LasR antagonist that should be widely employed as a chemical probe in QS of P. aeruginosa, providing new insights into LasR antagonism processes. The new discoveries shed light on the mysterious world of LuxR-type QS in this key opportunistic pathogen.


Assuntos
Percepção de Quorum , Fatores de Virulência , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa , Dimerização , Biofilmes , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/metabolismo , Antibacterianos/química
7.
Vaccines (Basel) ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38005960

RESUMO

Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.

8.
Int J Biol Macromol ; 248: 125818, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473891

RESUMO

The present study aimed to characterize the possible binding sites on the SARS CoV-2 RBD-ACE2 complex and to highlight sulfated oligosaccharides as potential anti-SARS CoV-2 via inducing RBD-ACE2 complex destabilization and dissociation. By combining pharmacophore-based and structural-based virtual screening approaches we were able to discover raffinose sulfate (RS) as a potential antiviral sulfated oligosaccharide against two SARS CoV-2 variants (i.e., wild type and Omicron) (IC50 = 4.45 ± 0.28 µM and 4.65 ± 0.32 µM, respectively). Upon MD simulation, RS was able to establish stable binding at the RBD-ACE2 interface inducing a rapid dissociation. Accordingly, and by using bio-layer interferometry (BLI) assays, RS was able to significantly weaken the affinity between RBD (of both variants) and ACE2. Additionally, we found that RS has a poor cellular permeability indicating that its interaction with the RBD-ACE2 complex may be the main mechanism by which it mediates its antiviral activity against SARS CoV-2. Despite its proposed interaction with the RBD-ACE2 complex, RS did not show any inhibitory activity against ACE2 catalytic activity. In light of these findings, the RS scaffold can be further developed into a novel anti-SARS CoV-2 drug with improved activity and tolerability in comparison with other sulfated polysaccharides e.g., heparin and heparan.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Rafinose , Sulfatos , Antivirais/farmacologia , Ligação Proteica
9.
Front Bioeng Biotechnol ; 11: 1099999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865031

RESUMO

Plant Growth Promoting Rhizobacteria (PGPR) has gained immense importance in the last decade due to its in-depth study and the role of the rhizosphere as an ecological unit in the biosphere. A putative PGPR is considered PGPR only when it may have a positive impact on the plant after inoculation. From the various pieces of literature, it has been found that these bacteria improve the growth of plants and their products through their plant growth-promoting activities. A microbial consortium has a positive effect on plant growth-promoting (PGP) activities evident by the literature. In the natural ecosystem, rhizobacteria interact synergistically and antagonistically with each other in the form of a consortium, but in a natural consortium, there are various oscillating environmental conditions that affect the potential mechanism of the consortium. For the sustainable development of our ecological environment, it is our utmost necessity to maintain the stability of the rhizobacterial consortium in fluctuating environmental conditions. In the last decade, various studies have been conducted to design synthetic rhizobacterial consortium that helps to integrate cross-feeding over microbial strains and reveal their social interactions. In this review, the authors have emphasized covering all the studies on designing synthetic rhizobacterial consortiums, their strategies, mechanism, and their application in the field of environmental ecology and biotechnology.

10.
Curr Microbiol ; 79(12): 372, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269434

RESUMO

The main objective of this investigation was to characterize a collection of actinomycetes strains isolated from unexplored polluted ecosystems and to evaluate their antimicrobial potential in order to discover interesting bioactive compounds. Based on morphological and culture characters, 32 different strains were isolated: 20 strains from compost heap, seven strains from manure, and five strains from waste water. As expected, the genus Streptomyces was the most prevalent followed by the genus Micromonospora. Analysis of the antimicrobial activities of the isolated strains showed that those from compost heap were more efficient against the tested microorganisms (Candida albicans, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli). Several bioactive compounds were identified by liquid chromatography (LC) combined with mass spectrometry (MS) and then analyzed by both MEDINA's database, which contains the most common secondary metabolites, and Dictionary of Natural Products Chapman & Hall. Many interesting well-known and unknown biomolecules were identified. Quinomycin A and Daidzein were the most fascinating compounds isolated, respectively, by Streptomyces sp. WW2 and Streptomyces sp. WW4. The most active strain was identified based on 16S rDNA's sequences and it seems to be a new strain. The crude extract of the strain CH12 was analyzed and the UV absorption spectra and mass spectra (MS) of the main active compound were reported. It's an interesting compound (possible purpuromycin) with the molecular formula C26H18O13.


Assuntos
Actinobacteria , Anti-Infecciosos , Produtos Biológicos , Equinomicina , Staphylococcus aureus Resistente à Meticilina , Streptomyces , Actinobacteria/genética , Actinomyces , Ecossistema , Equinomicina/metabolismo , Esterco , Águas Residuárias , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Antibacterianos/química , Streptomyces/genética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Produtos Biológicos/metabolismo , DNA Ribossômico , Testes de Sensibilidade Microbiana
11.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234867

RESUMO

There has been a lot of interest in the manufacture of stable, high-efficiency photocatalysts. In this study, initially Cr doped ZnFe2O4 nanoparticles (NPs) were made via surfactant-assisted hydrothermal technique. Then Cr-ZnFe2O4 NPs were modified by incorporating S-g-C3N4 to enhance their photocatalytic efficiency. The morphological, structural, and bonding aspects were analyzed by XRD, FTIR, and SEM techniques. The photocatalytic efficiency of the functional Cr-ZnFe2O4/S-g-C3N4 (ZFG) heterostructure photocatalysts was examined against MB under sunlight. The produced ZFG-50 composite has the best photocatalytic performance, which is 2.4 and 3.5 times better than that of ZnFe2O4 and S-g-C3N4, respectively. Experiments revealed that the enhanced photocatalytic activity of the ZFG nanocomposite was caused by a more effective transfer and separation of photo-induced charges. The ZFG photocatalyst can use sunlight for treating polluted water, and the proposed modification of ZnFe2O4 using Cr and S-g-C3N4 is efficient, affordable, and environmentally benign. Under visible light, Gram-positive and Gram-negative bacteria were employed to ZFG-50 NCs' antimicrobial activity. These ZFG-50 NCs also exhibit excellent antibacterial potential.


Assuntos
Antibacterianos , Luz Solar , Antibacterianos/farmacologia , Catálise , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Tensoativos , Água
12.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080381

RESUMO

Malaria is one of the most important infectious diseases worldwide. The causative of the most severe forms of malaria, Plasmodium falciparum, has developed resistances against all the available antimalarial drugs. In the present study, the phytochemical investigation of the green seaweed Halimeda macroloba has afforded two new compounds 1-2, along with 4 known ones 3-6. The structures of the compounds had been confirmed using 1& 2D-NMR and HRESIMS analyses. Extensive machine-learning-supported virtual-screening suggested cytochrome-C enzyme as a potential target for compound 2. Docking, absolute-binding-free-energy (ΔGbinding) and molecular-dynamics-simulation (MDS) of compound 2 revealed the strong binding interaction of this compound with cytochrome-C. In vitro testing for crude extract and isolated compounds revealed the potential in vitro inhibitory activity of both extract and compound 2 against P. falciparum. The crude extract was able to inhibit the parasite growth with an IC50 value of 1.8 ± 0.35 µg/mL. Compound 2 also showed good inhibitory activity with an IC50 value of 3.2 ± 0.23 µg/mL. Meanwhile, compound 6 showed moderate inhibitory activity with an IC50 value of 19.3 ± 0.51 µg/mL. Accordingly, the scaffold of compound 2 can be considered as a good lead compound for the future development of new antimalarial agents.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Alga Marinha , Antimaláricos/química , Citocromos , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/química , Plasmodium falciparum
13.
Viruses ; 14(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36146743

RESUMO

Background: Very few studies have been reported on hepatitis B in the State of Azad Jammu and Kashmir, Pakistan, and none of them are specific to the prevalence and causes of hepatitis B spread among educational institutes. This study aimed to estimate the prevalence of hepatitis B infection and its associated risk factors among the University of AJ and K population. Methods: An observational, cross-sectional, and analytical study was conducted with 7015 students and employees. Hepatitis B was detected by rapid immunochromatographic tests (ICTs), enzyme-linked immunosorbent assay (ELISA), and real-time quantitative PCR. A questionnaire and interview method was used to assess the disease knowledge and associated risk factors with hepatitis B through Chi-square, Fisher's exact test, and paired t-test. Results: Of the participants, 150 (2.13%) were found positive for the hepatitis B surface antigen (57.3% male and 42.7% female). Only 0.3% participants were found fully vaccinated against the hepatitis B virus. Among ethnic groups, the Syed tribe was found more prevalent for hepatitis B infection (40.6%), while use of contaminated mourning blades (95% CI: p = 0.0001) was found as an overlooked risk factor. Hepatitis preventive awareness sessions were found to be very significant (p = 0.0001). Conclusions: The study showed that an overlooked risk factor is playing a key role in the spread of HBV in a tribe living worldwide, which must be addressed globally to eradicate hepatitis B. In Pakistan, a country-wide annual HBV vaccination program should be launched to control hepatitis B.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B , Estudos Transversais , Feminino , Hepatite B/epidemiologia , Hepatite B/prevenção & controle , Vírus da Hepatite B , Humanos , Masculino , Prevalência , Fatores de Risco , Universidades
14.
Plants (Basel) ; 11(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684165

RESUMO

LC-HRMS-assisted chemical profiling of Zizyphus mauritiana fruit extract (ZFE) led to the dereplication of 28 metabolites. Furthermore, wound healing activity of ZFE in 24 adult male New Zealand Dutch strain albino rabbits was investigated in-vivo supported by histopathological investigation. Additionally, the molecular mechanism was studied through different in-vitro investigations as well as, studying both relative gene expression and relative protein expression patterns. Moreover, the antioxidant activity of ZFE extract was examined using two in-vitro assays including hydrogen peroxide and superoxide radical scavenging activities that showed promising antioxidant potential. Topical application of the extract on excision wounds showed a significant increase in the wound healing rate (p < 0.001) in comparison to the untreated and MEBO®-treated groups, enhancing TGF-ß1, VEGF, Type I collagen expression, and suppressing inflammatory markers (TNF-α and IL-1ß). Moreover, an in silico molecular docking against TNFα, TGFBR1, and IL-1ß showed that some of the molecules identified in ZFE can bind to the three wound-healing related protein actives sites. Additionally, PASS computational calculation of antioxidant activity revealed potential activity of three phenolic compounds (Pa score > 0.5). Consequently, ZFE may be a potential alternative medication helping wound healing owing to its antioxidant and anti-inflammatory activities.

15.
Infect Genet Evol ; 103: 105321, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753621

RESUMO

The aim of the present study is to establish a method, based on sequence analysis of the helix 54 of 23S rRNA gene, to identify clinical relevant strains belonging to viridans group streptococci (VGS). A set of 25 randomly selected clinical isolates of alpha-hemolytic streptococci from upper respiratory tract were characterized by the routine phenotypic methods (API 20 Strep test). Molecular characterization was assessed by genotypic analysis of the nucleotide sequence of the helix 54 of 23S rRNA and Intergenic spacer region 16S23S. Partial sequencing of the gdh gene was used on 10 strains of mitis group. Sequence variations of the helix 54 allowed the identification of strains to group level and even to species level for certain strains within sanguinis and anginosus groups. Infact, species identification was ambiguous for some strains belonged to the salivarius group (of VGS16 to VGS20) and the mitis group (of VGS1 to VGS14). These results are almost similar to those obtained by sequencing the 16S23S intergenic region. Thus, we use the gdh gene sequencing for the identification of strains, not recognized, within the mitis group. The results generated herein indicate that no single methodology can be used to provide an accurate identification to the species level of all VGS, although nucleotide sequence analysis of the helix 54 of 23S rRNA gene proved to be a reliable method for the identification of VGS to the group level and even to the species level within sanguinis and anginosus groups.


Assuntos
Streptococcus , Estreptococos Viridans , DNA Ribossômico , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Streptococcus/genética , Estreptococos Viridans/genética
16.
Vaccines (Basel) ; 9(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835248

RESUMO

Respiratory viruses represent a major public health concern, as they are highly mutated, resulting in new strains emerging with high pathogenicity. Currently, the world is suffering from the newly evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus is the cause of coronavirus disease 2019 (COVID-19), a mild-to-severe respiratory tract infection with frequent ability to give rise to fatal pneumonia in humans. The overwhelming outbreak of SARS-CoV-2 continues to unfold all over the world, urging scientists to put an end to this global pandemic through biological and pharmaceutical interventions. Currently, there is no specific treatment option that is capable of COVID-19 pandemic eradication, so several repurposed drugs and newly conditionally approved vaccines are in use and heavily applied to control the COVID-19 pandemic. The emergence of new variants of the virus that partially or totally escape from the immune response elicited by the approved vaccines requires continuous monitoring of the emerging variants to update the content of the developed vaccines or modify them totally to match the new variants. Herein, we discuss the potential therapeutic and prophylactic interventions including repurposed drugs and the newly developed/approved vaccines, highlighting the impact of virus evolution on the immune evasion of the virus from currently licensed vaccines for COVID-19.

17.
Pathogens ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069460

RESUMO

In late December 2019, a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), escaped the animal-human interface and emerged as an ongoing global pandemic with severe flu-like illness, commonly known as coronavirus disease 2019 (COVID-19). In this study, a molecular docking study was carried out for seventeen (17) structural analogues prepared from natural maslinic and oleanolic acids, screened against SARS-CoV-2 main protease. Furthermore, we experimentally validated the virtual data by measuring the half-maximal cytotoxic and inhibitory concentrations of each compound. Interestingly, the chlorinated isoxazole linked maslinic acid (compound 17) showed promising antiviral activity at micromolar non-toxic concentrations. Thoughtfully, we showed that compound 17 mainly impairs the viral replication of SARS-CoV-2. Furthermore, a very promising SAR study for the examined compounds was concluded, which could be used by medicinal chemists in the near future for the design and synthesis of potential anti-SARS-CoV-2 candidates. Our results could be very promising for performing further additional in vitro and in vivo studies on the tested compound (17) before further licensing for COVID-19 treatment.

18.
RSC Adv ; 11(56): 35536-35558, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493159

RESUMO

The global COVID-19 pandemic became more threatening especially after the introduction of the second and third waves with the current large expectations for a fourth one as well. This urged scientists to rapidly develop a new effective therapy to combat SARS-CoV-2. Based on the structures of ß-adrenergic blockers having the same hydroxyethylamine and hydroxyethylene moieties present in the HIV-1 protease inhibitors which were found previously to inhibit the replication of SARS-CoV, we suggested that they may decrease the SARS-CoV-2 entry into the host cell through their ability to decrease the activity of RAAS and ACE2 as well. Herein, molecular docking of twenty FDA-approved ß-blockers was performed targeting SARS-CoV-2 Mpro. Results showed promising inhibitory activities especially for Carvedilol (CAR) and Nebivolol (NEB) members. Moreover, these two drugs together with Bisoprolol (BIS) as an example from the lower active ones were subjected to molecular dynamics simulations at 100 ns. Great stability across the whole 100 ns timeframe was observed for the top docked ligands, CAR and NEB, over BIS. Conformational analysis of the examined drugs and hydrogen bond investigation with the pocket's crucial residues confirm the great affinity and confinement of CAR and NEB within the Mpro binding site. Moreover, the binding-free energy analysis and residue-wise contribution analysis highlight the nature of ligand-protein interaction and provide guidance for lead development and optimization. Furthermore, the examined three drugs were tested for their in vitro inhibitory activities towards SARS-CoV-2. It is worth mentioning that NEB achieved the most potential anti-SARS-CoV-2 activity with an IC50 value of 0.030 µg ml-1. Besides, CAR was found to have a promising inhibitory activity with an IC50 of 0.350 µg ml-1. Also, the IC50 value of BIS was found to be as low as 15.917 µg ml-1. Finally, the SARS-CoV-2 Mpro assay was performed to evaluate and confirm the inhibitory effects of the tested compounds (BIS, CAR, and NEB) towards the SARS-CoV-2 Mpro enzyme. The obtained results showed very promising SARS-CoV-2 Mpro inhibitory activities of BIS, CAR, and NEB (IC50 = 118.50, 204.60, and 60.20 µg ml-1, respectively) compared to lopinavir (IC50 = 73.68 µg ml-1) as a reference standard.

19.
Toxins (Basel) ; 12(3)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168976

RESUMO

In this study, we investigated a novel aflatoxin biosensor based on acetylcholinesterase (AChE) inhibition by aflatoxin B1 (AFB1) and developed electrochemical biosensors based on a sodium alginate biopolymer as a new matrix for acetylcholinesterase immobilization. Electrochemical impedance spectroscopy was performed as a convenient transduction method to evaluate the AChE activity through the oxidation of the metabolic product, thiocholine. Satisfactory analytical performances in terms of high sensitivity, good repeatability, and long-term storage stability were obtained with a linear dynamic range from 0.1 to 100 ng/mL and a low detection limit of 0.1 ng/mL, which is below the recommended level of AFB1 (2 µg/L). The suitability of the proposed method was evaluated using the samples of rice supplemented with AFB1 (0.5 ng/mL). The selectivity of the AChE-biosensor for aflatoxins relative to other sets of toxic substances (OTA, AFM 1) was also investigated.


Assuntos
Acetilcolinesterase/química , Aflatoxina B1/análise , Alginatos/química , Técnicas Biossensoriais , Inibidores da Colinesterase/análise , Acetiltiocolina/química , Aflatoxina B1/química , Inibidores da Colinesterase/química , Espectroscopia Dielétrica , Contaminação de Alimentos/análise , Oryza/química
20.
Saudi J Biol Sci ; 26(5): 1078-1083, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31303843

RESUMO

Black cutworm (BCW) is an economically important lepidopteran insect. The control of this insect by a Bt toxin and the understanding of the interaction between the Bt toxin and its receptor molecule were the objectives of this research work. A gene coding for a Vip3A receptor molecule was identified, characterized, and cloned, from the brush border membrane vesicles (BBMV) of the BCW. The nucleotide sequence analysis of the cloned putative Vip3A-receptor gene revealed that the gene was 1.3-kb long and exhibited no homology with any gene in the gene bank. We succeeded in identifying and characterizing most of the Vip3A-receptor gene sequence; and the nucleotide sequence analysis of the cloned putative Vip3A-receptor gene (accession no. KX858809) revealed about 92% of the expected sequence was recovered, which exhibited no homology with any gene in the GenBank.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...