Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(8): 081601, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053697

RESUMO

We show that for a range of strongly coupled theories with a first order phase transition, the domain wall or bubble velocity can be expressed in a simple way in terms of a perfect fluid hydrodynamic formula, and thus in terms of the equation of state. We test the predictions for the domain wall velocities using the gauge/gravity duality.

2.
Phys Rev Lett ; 124(8): 081601, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167365

RESUMO

We provide the first characterization of the nonlinear and time dependent rheologic response of viscoelastic bottom-up holographic models. More precisely, we perform oscillatory shear tests in holographic massive gravity theories with finite elastic response, focusing on the large amplitude oscillatory shear (LAOS) regime. The characterization of these systems is done using several techniques: (i) the Lissajous figures, (ii) the Fourier analysis of the stress signal, (iii) the Pipkin diagram and (iv) the dependence of the storage and loss moduli on the amplitude of the applied strain. We find substantial evidence for a strong strain stiffening mechanism, typical of hyperelastic materials such as rubbers and complex polymers. This indicates that the holographic models considered are not a good description for rigid metals, where strain stiffening is not commonly observed. Additionally, a crossover between a viscoelastic liquid regime at small graviton mass (compared to the temperature scale), and a viscoelastic solid regime at large values is observed. Finally, we discuss the relevance of our results for soft matter and for the understanding of the widely used homogeneous holographic models with broken translations.

3.
Phys Rev Lett ; 119(26): 261601, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328720

RESUMO

We study the fully nonlinear time evolution of a holographic system possessing a first order phase transition. The initial state is chosen in the spinodal region of the phase diagram, and it includes an inhomogeneous perturbation in one of the field theory directions. The final state of the time evolution shows a clear phase separation in the form of domain formation. The results indicate the existence of a very rich class of inhomogeneous black hole solutions.

4.
Phys Rev Lett ; 117(9): 091603, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610844

RESUMO

We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...