Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 252, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433763

RESUMO

Functional connectivity is scaffolded by the structural connections of the brain. Disruptions of either structural or functional connectivity can lead to deficits in cognitive functions and increase the risk for neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD). To date, very little research has examined the association between structural and functional connectivity in typical development, while no studies have attempted to understand the development of structure-function coupling in children with ADHD. 175 individuals (84 typically developing children and 91 children with ADHD) participated in a longitudinal neuroimaging study with up to three waves. In total, we collected 278 observations between the ages 9 and 14 (139 each in typically developing controls and ADHD). Regional measures of structure-function coupling were calculated at each timepoint using Spearman's rank correlation and mixed effect models were used to determine group differences and longitudinal changes in coupling over time. In typically developing children, we observed increases in structure-function coupling strength across multiple higher-order cognitive and sensory regions. Overall, weaker coupling was observed in children with ADHD, mainly in the prefrontal cortex, superior temporal gyrus, and inferior parietal cortex. Further, children with ADHD showed an increased rate of coupling strength predominantly in the inferior frontal gyrus, superior parietal cortex, precuneus, mid-cingulate, and visual cortex, compared to no corresponding change over time in typically developing controls. This study provides evidence of the joint maturation of structural and functional brain connections in typical development across late childhood to mid-adolescence, particularly in regions that support cognitive maturation. Findings also suggest that children with ADHD exhibit different patterns of structure-function coupling, suggesting atypical patterns of coordinated white matter and functional connectivity development predominantly in the regions overlapping with the default mode network, salience network, and dorsal attention network during late childhood to mid-adolescence.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtornos do Neurodesenvolvimento , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição , Neuroimagem
2.
Hum Brain Mapp ; 44(8): 3394-3409, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988503

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a prevalent childhood neurodevelopmental disorder. Given the profound brain changes that occur during childhood and adolescence, it is important to examine longitudinal changes of both functional and structural brain connectivity across development in ADHD. This study aimed to examine the development of functional and structural connectivity in children with ADHD compared to controls using graph metrics. One hundred and seventy five individuals (91 children with ADHD and 84 non-ADHD controls) participated in a longitudinal neuroimaging study with up to three waves. Graph metrics were derived from 370 resting state fMRI (197 Control, 173 ADHD) and 297 diffusion weighted imaging data (152 Control, 145 ADHD) acquired between the ages of 9 and 14. For functional connectivity, children with ADHD (compared to typically developing children) showed lower degree, local efficiency and betweenness centrality predominantly in parietal, temporal and visual cortices and higher degree, local efficiency and betweenness centrality in frontal, parietal, and temporal cortices. For structural connectivity, children with ADHD had lower local efficiency in parietal and temporal cortices and, higher degree and betweenness centrality in frontal, parietal and temporal cortices. Further, differential developmental trajectories of functional and structural connectivity for graph measures were observed in higher-order cognitive and sensory regions. Our findings show that topology of functional and structural connectomes matures differently between typically developing controls and children with ADHD during childhood and adolescence. Specifically, functional and structural neural circuits associated with sensory and various higher order cognitive functions are altered in children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Conectoma , Adolescente , Humanos , Criança , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Cognição , Mapeamento Encefálico , Vias Neurais/diagnóstico por imagem
3.
Artigo em Inglês | MEDLINE | ID: mdl-35033687

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood neurodevelopmental disorder. Given the profound brain changes that occur across childhood and adolescence, it is important to identify functional networks that exhibit differential developmental patterns in children with ADHD. This study sought to examine whether children with ADHD exhibit differential developmental trajectories in functional connectivity compared with typically developing children using a network-based approach. METHODS: This longitudinal neuroimaging study included 175 participants (91 children with ADHD and 84 control children without ADHD) between ages 9 and 14 and up to 3 waves (173 total resting-state scans in children with ADHD and 197 scans in control children). We adopted network-based statistics to identify connected components with trajectories of development that differed between groups. RESULTS: Children with ADHD exhibited differential developmental trajectories compared with typically developing control children in networks connecting cortical and limbic regions as well as between visual and higher-order cognitive regions. A pattern of reduction in functional connectivity between corticolimbic networks was seen across development in the control group that was not present in the ADHD group. Conversely, the ADHD group showed a significant decrease in connectivity between predominantly visual and higher-order cognitive networks that was not displayed in the control group. CONCLUSIONS: Our findings show that the developmental trajectories in children with ADHD are characterized by a subnetwork involving different trajectories predominantly between corticolimbic regions and between visual and higher-order cognitive network connections. These findings highlight the importance of examining the longitudinal maturational course to understand the development of functional connectivity networks in children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Conectoma , Adolescente , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Encéfalo , Conectoma/métodos , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...