Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Neurosci ; 15: 769331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795558

RESUMO

Mitochondrial dysfunction plays a significant role in the pathogenesis of Parkinson's disease (PD). Consistent with this concept, loss of function mutations in the serine/threonine kinase- PINK1 (PTEN-induced putative kinase-1) causes autosomal recessive early onset PD. While the functional role of f-PINK1 (full-length PINK1) in clearing dysfunctional mitochondria via mitophagy is extensively documented, our understanding of specific physiological roles that the non-mitochondrial pool of PINK1 imparts in neurons is more limited. PINK1 is proteolytically processed in the intermembrane space and matrix of the mitochondria into functional cleaved products (c-PINK1) that are exported to the cytosol. While it is clear that posttranslational processing of PINK1 depends on the mitochondria's oxidative state and structural integrity, the functional roles of c-PINK1 in modulating neuronal functions are poorly understood. Here, we review the diverse roles played by c-PINK1 in modulating various neuronal functions. Specifically, we describe the non-canonical functional roles of PINK1, including but not limited to: governing mitochondrial movement, neuronal development, neuronal survival, and neurogenesis. We have published that c-PINK1 stimulates neuronal plasticity and differentiation via the PINK1-PKA-BDNF signaling cascade. In addition, we provide insight into how mitochondrial membrane potential-dependent processing of PINK1 confers conditional retrograde signaling functions to PINK1. Further studies delineating the role of c-PINK1 in neurons would increase our understanding regarding the role played by PINK1 in PD pathogenesis.

3.
J Neurosci Res ; 99(9): 2134-2155, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34046942

RESUMO

Mutations in PTEN-induced kinase 1 (PINK1) lead to early onset autosomal recessive Parkinson's disease in humans. In healthy neurons, full-length PINK1 (fPINK1) is post-translationally cleaved into different lower molecular weight forms, and cleaved PINK1 (cPINK1) gets shuttled to the cytosolic compartments to support extra-mitochondrial functions. While numerous studies have exemplified the role of mitochondrially localized PINK1 in modulating mitophagy in oxidatively stressed neurons, little is known regarding the physiological role of cPINK1 in healthy neurons. We have previously shown that cPINK1, but not fPINK1, modulates the neurite outgrowth and the maintenance of dendritic arbors by activating downstream protein kinase A (PKA) signaling in healthy neurons. However, the molecular mechanisms by which cPINK1 promotes neurite outgrowth remain to be elucidated. In this report, we show that cPINK1 supports neuronal development by modulating the expression and extracellular release of brain-derived neurotrophic factor (BDNF). Consistent with this role, we observed a progressive increase in the level of endogenous cPINK1 but not fPINK1 during prenatal and postnatal development of mouse brains and during development in primary cortical neurons. In cultured primary neurons, the pharmacological activation of endogenous PINK1 leads to enhanced downstream PKA activity, subsequent activation of the PKA-modulated transcription factor cAMP response element-binding protein (CREB), increased intracellular production and extracellular release of BDNF, and enhanced activation of the BDNF receptor-TRKß. Mechanistically, cPINK1-mediated increased dendrite complexity requires the binding of extracellular BDNF to TRKß. In summary, our data support a physiological role of cPINK1 in stimulating neuronal development by activating the PKA-CREB-BDNF signaling axis in a feedforward loop.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Biol Open ; 8(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31548178

RESUMO

The loss of dopaminergic neurons (DA) is a pathological hallmark of sporadic and familial forms of Parkinson's disease (PD). We have previously shown that inhibiting mitochondrial calcium uniporter (mcu) using morpholinos can rescue DA neurons in the PTEN-induced putative kinase 1 (pink1)-/- zebrafish model of PD. In this article, we show results from our studies in mcu knockout zebrafish, which was generated using the CRISPR/Cas9 system. Functional assays confirmed impaired mitochondrial calcium influx in mcu -/- zebrafish. We also used in vivo calcium imaging and fluorescent assays in purified mitochondria to investigate mitochondrial calcium dynamics in a pink1 -/- zebrafish model of PD. Mitochondrial morphology was evaluated in DA neurons and muscle fibers using immunolabeling and transgenic lines, respectively. We observed diminished mitochondrial area in DA neurons of pink1 -/- zebrafish, while deletion of mcu restored mitochondrial area. In contrast, the mitochondrial volume in muscle fibers was not restored after inactivation of mcu in pink1 -/- zebrafish. Mitochondrial calcium overload coupled with depolarization of mitochondrial membrane potential leads to mitochondrial dysfunction in the pink1 -/- zebrafish model of PD. We used in situ hybridization and immunohistochemical labeling of DA neurons to evaluate the effect of mcu deletion on DA neuronal clusters in the ventral telencephalon of zebrafish brain. We show that DA neurons are rescued after deletion of mcu in pink1 -/- and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) zebrafish model of PD. Thus, inactivation of mcu is protective in both genetic and chemical models of PD. Our data reveal that regulating mcu function could be an effective therapeutic target in PD pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...