Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4265, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253725

RESUMO

The quantum Hall effect is the seminal example of topological protection, as charge carriers are transmitted through one-dimensional edge channels where backscattering is prohibited. Graphene has made its marks as an exceptional platform to reveal new facets of this remarkable property. However, in conventional Hall bar geometries, topological protection of graphene edge channels is found regrettably less robust than in high mobility semi-conductors. Here, we explore graphene quantum Hall regime at the local scale, using a scanning gate microscope. We reveal the detrimental influence of antidots along the graphene edges, mediating backscattering towards upstream edge channels, hence triggering topological breakdown. Combined with simulations, our experimental results provide further insights into graphene quantum Hall channels vulnerability. In turn, this may ease future developments towards precise manipulation of topologically protected edge channels hosted in various types of two-dimensional crystals.

2.
Phys Rev Lett ; 124(17): 177701, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412294

RESUMO

We report on measurements of quantized conductance in gate-defined quantum point contacts in bilayer graphene that allow the observation of subband splittings due to spin-orbit coupling. The size of this splitting can be tuned from 40 to 80 µeV by the displacement field. We assign this gate-tunable subband splitting to a gap induced by spin-orbit coupling of Kane-Mele type, enhanced by proximity effects due to the substrate. We show that this spin-orbit coupling gives rise to a complex pattern in low perpendicular magnetic fields, increasing the Zeeman splitting in one valley and suppressing it in the other one. In addition, we observe a spin polarized channel of 6e^{2}/h at high in-plane magnetic field and signatures of interaction effects at the crossings of spin-split subbands of opposite spins at finite magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...