Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(1): E92-E101, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29183985

RESUMO

Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO32-) is oxidized to phosphate (PO43-), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax (Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria, which has no known cultured isolates. Genes for phosphite oxidation and for CO2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.


Assuntos
Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico/fisiologia , Deltaproteobacteria , Metagenômica , Fosfitos/metabolismo , Esgotos/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Oxirredução , Purificação da Água
2.
Appl Environ Microbiol ; 81(8): 2717-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662971

RESUMO

Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30 °C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42 °C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms.


Assuntos
Cloratos/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Percloratos/metabolismo , Poluentes Químicos da Água/metabolismo , California , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Gammaproteobacteria/ultraestrutura , Genótipo , Sedimentos Geológicos/microbiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...