Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 44(4): 171-80, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16757173

RESUMO

At5g52560, a homolog of pea (Pisum sativum) UDP-sugar pyrophosphorylase (PsUSP) was functionally annotated by expression in Escherichia coli and subsequent characterization of substrate specificity and kinetic properties. Arabidopsis contains a single USP gene (AtUSP) and evaluation of gene databases suggests that USP is unique to plants. The 69 kDa AtUSP gene product exhibited high activity with Glc-1-P, GlcA-1-P and Gal-1-P, but low activity with GlcNAc-1-P, Fuc-1-P, Man-1-P, inositol-1-P or Glc-6-P. AtUSP was activated by magnesium and preferred UTP as co-substrate. Apparent K(m) values for GlcA-1-P, Glc-1-P and UTP were 0.13 mM, 0.42 mM and 0.14 mM, respectively. In the reverse direction (pyrophosphorolysis), the apparent K(m) values for UDP-GlcA, UDP-Glc and pyrophosphate were 0.56 mM, 0.72 mM and 0.15 mM, respectively. USP enzyme activity (UDP-GlcA --> GlcA-1-P) was detected in Arabidopsis tissues with highest activity found in the inflorescence. As determined by semi-quantitative RT-PCR, AtUSP transcript is widely expressed with high levels detected in the inflorescence. To evaluate tissue-specific expression of AtUSP, histochemical GUS staining of plants transformed with AtUSPprom:GUS constructs was performed. In 7-day-old seedlings, GUS staining was detected in cotyledons, trichomes and vascular tissues of the primary root. In the inflorescence of older plants, high levels of GUS staining were detected in cauline leaves, the epidermis of the stem and in pollen. In silico analysis of AtUSP expression in developing pollen indicates that transcript levels increase as development proceeds from the uninucleate to the tricellular stage. The results suggest that AtUSP plays an important role in pollen development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nucleotidiltransferases/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Cinética , Nucleotidiltransferases/genética , Pólen/enzimologia , Regiões Promotoras Genéticas/fisiologia , Plântula/genética , Plântula/metabolismo , Especificidade por Substrato
2.
Plant Mol Biol ; 52(2): 421-32, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12856947

RESUMO

A substantial literature exists characterizing transgene locus structure from plants transformed via Agrobacterium and direct DNA delivery. However, there is little comprehensive sequence analysis of transgene loci available, especially from plants transformed by direct delivery methods. The goal of this study was to completely sequence transgene loci from two oat lines transformed via microprojectile bombardment that were shown to have simple transgene loci by Southern analysis. In line 3830, transformed with a single plasmid, one major and one of two minor loci were completely sequenced. Both loci exhibited rearranged delivered DNA and flanking genomic sequences. The minor locus contained only 296 bp of two non-contiguous fragments of the delivered DNA flanked by genomic (filler) DNA that did not originate from the integration target site. Predicted recognition sites for topoisomerase II and a MAR region were observed in the transgene integration target site for this non-functional minor locus. Line 11929, co-transformed with two different plasmids, had a single relatively simple transgene locus composed of truncated and rearranged sequences from both delivered DNAs. The transgene loci in both lines exhibited multiple transgene and genomic DNA rearrangements and regions of scrambling characteristic of complex transgene loci. The similar characteristics of recombined fragments and junctions in both transgenic oat lines implicate similar mechanisms of transgene integration and rearrangement regardless of the number of co-transformed plasmids and the level of transgene locus complexity.


Assuntos
Avena/genética , DNA de Plantas/genética , Plantas Geneticamente Modificadas/genética , Transgenes/genética , Sítios de Ligação/genética , Southern Blotting , Técnicas de Transferência de Genes , Plasmídeos/genética , Transformação Genética/genética
3.
Genome ; 44(4): 691-7, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11550906

RESUMO

The structure of transgene loci in six transgenic allohexaploid oat (Avena sativa L.) lines produced using microprojectile bombardment was characterized using fluorescence in situ hybridization (FISH) on extended DNA fibers (fiber-FISH). The transgene loci in five lines were composed of multiple copies of delivered DNA interspersed with genomic DNA fragments ranging in size from ca. 3 kb to at least several hundred kilobases, and in greater numbers than detected using Southern blot analysis. Although Southern analysis predicted that the transgene locus in one line consisted of long tandem repeats of the delivered DNA, fiber-FISH revealed that the locus actually contained multiple genomic interspersions. These observations indicated that transgene locus size and structure were determined by the number of transgene copies and, possibly to a greater extent, the number and the length of interspersing genomic DNA sequences within the locus. Large genomic interspersions detected in several lines were most likely the products of chromosomal breakage induced either by tissue culture conditions or, more likely, by DNA delivery into the nucleus using microprojectile bombardment. We propose that copies of transgene along with other extrachromosomal DNA fragments are used as patches to repair double-strand breaks (DSBs) in the plant genome resulting in the formation of transgene loci.


Assuntos
Plantas Geneticamente Modificadas , Transgenes , Avena/genética , Southern Blotting , DNA/metabolismo , Genótipo , Hibridização In Situ , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Plasmídeos/metabolismo
4.
Plant Cell Rep ; 20(2): 150-156, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30759902

RESUMO

Agrobacterium tumefaciens efficiently transforms most plants. A few dicotyledonous plants and most monocotyledonous plants are, however, recalcitrant to A. tumefaciens infection. We investigated whether the constitutive synthesis of a high level of the T-strand DNA intermediate can improve the transformation efficiency of plants. We previously described a mutation in the vir gene regulator virG, virGN54D, that allows constitutive expression of the vir genes. We also described the isolation of a mutant plasmid that is present at a significantly high level in A. tumefaciens. The two mutations were combined to produce an A. tumefaciens strain that synthesizes a high level of T-strand DNA in an inducer-independent manner. DNA transfer efficiency of the mutant was measured by monitoring ß-glucuronidase (GUS) expression in a transient transfer assay. A significant increase in the efficiency of DNA transfer to both rice and soybean was observed with the double mutant. The presence of virGN54D had a major positive effect on transformation efficiency.

6.
Mol Plant Microbe Interact ; 13(2): 159-69, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10659706

RESUMO

Fusarium head blight (FHB) of wheat is a crippling disease that causes severe economic losses in many of the wheat-growing regions of the world. Temporal patterns of fungus development and transcript accumulation of defense response genes were studied in Fusarium graminearum-inoculated wheat spikes within the first 48 to 76 h after inoculation (hai). Microscopy of inoculated glumes revealed that the fungus appeared to penetrate through stomata, exhibited subcuticular growth along stomatal rows, colonized glume parenchyma cells, and sporulated within 48 to 76 hai. No major differences in the timing of these events were found between Sumai 3 (resistant) and Wheaton (susceptible) genotypes. In complementary experiments, RNA was extracted from spikes at several time intervals up to 48 hai and temporal expression patterns were determined for defense response genes encoding peroxidase, PR-1, PR-2 (beta-1,3-glucanase), PR-3 (chitinase), PR-4, and PR-5 (thaumatin-like protein). In both genotypes, transcripts for the six defense response genes accumulated as early as 6 to 12 hai during F. graminearum infection and peaked at 36 to 48 hai. Greater and earlier PR-4 and PR-5 transcript accumulation was observed in Sumai 3, compared with Wheaton. Our results show that the timing of defense response gene induction is correlated with F. graminearum infection.


Assuntos
Fusarium/patogenicidade , Genes de Plantas , Triticum/genética , Triticum/microbiologia , Sondas de DNA/genética , Fusarium/crescimento & desenvolvimento , Expressão Gênica , Genótipo , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Tempo
7.
Biotechnol Prog ; 15(6): 1053-7, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10585189

RESUMO

Bacterial genes responsible for poly(3-hydroxybutyrate) (PHB) biosynthesis were targeted to plant peroxisomes by adding a carboxy-terminal targeting sequence. The enzymes evidently were transported into peroxisomes, retained their catalytic activity, and reacted with peroxisomally available precursors because PHB synthesis in transgenic plant cells was localized to peroxisomes. Up to 2 mg/g fresh weight PHB was produced in suspension cultures of Black Mexican Sweet maize cells after biolistic transformation with three peroxisomally targeted bacterial genes. An equilibrium effect is proposed to explain the unexpected existence of (R)-3-hydroxybutyryl-CoA in plant peroxisomes.


Assuntos
Hidroxibutiratos/síntese química , Hidroxibutiratos/metabolismo , Peroxissomos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poliésteres/síntese química , Poliésteres/metabolismo , Biotecnologia/métodos , Células Cultivadas , Zea mays
8.
Theor Appl Genet ; 99(3-4): 561-9, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665190

RESUMO

Resistance to Fusarium head blight (FHB), deoxynivalenol (DON) accumulation, and kernel discoloration (KD) in barley are difficult traits to introgress into elite varieties because current screening methods are laborious and disease levels are strongly influenced by environment. To improve breeding strategies directed toward enhancing these traits, we identified genomic regions containing quantitative trait loci (QTLs) associated with resistance to FHB, DON accumulation, and KD in a breeding population of F(4:7) lines using restriction fragment length polymorphic (RFLP) markers. We evaluated 101 F(4:7) lines, derived from a cross between the cultivar Chevron and an elite breeding line, M69, for each of the traits in three or four environments. We used 94 previously mapped RFLP markers to create a linkage map. Using composite interval mapping, we identified 10, 11, and 4 QTLs associated with resistance to FHB, DON accumulation, and KD, respectively. Markers flanking these QTLs should be useful for introgressing resistance to FHB, DON accumulation, and KD into elite barley cultivars.

9.
Proc Natl Acad Sci U S A ; 95(21): 12106-10, 1998 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-9770447

RESUMO

Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35-280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.


Assuntos
Avena/genética , DNA de Plantas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética
10.
Plant Mol Biol ; 38(4): 597-607, 1998 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9747805

RESUMO

An irregular pattern of transgene silencing was revealed in expression and inheritance studies conducted over multiple generations following transgene introduction by microprojectile bombardment of allohexaploid cultivated oat (Avena sativa L.). Expression of two transgenes, bar and uidA, delivered on the same plasmid was investigated in 23 transgenic oat lines. Twenty-one transgenic lines, each derived from an independently selected transformed tissue culture, showed expression of both bar and uidA while two lines expressed only bar. The relationship of the transgenic phenotypes to the presence of the transgenes in the study was determined using (1) phenotypic scoring combined with Southern blot analyses of progeny, (2) coexpression of the two transgenic phenotypes since the two transgenes always cosegregated, and (3) reactivation of a transgenic phenotype in self-pollinated progenies of transgenic plants that did not exhibit a transgenic phenotype. Transgene silencing was observed in 19 of the 23 transgenic lines and resulted in distorted segregation of transgenic phenotypes in 10 lines. Silencing and inheritance distortions were irregular and unpredictable. They were often reversible in a subsequent generation of self-pollinated progeny and abnormally segregating progenies were as likely to trace back to parents that exhibited normal segregation in a previous generation as to parents showing segregation distortions. Possible causes of the irregular patterns of transgene silencing are discussed.


Assuntos
Avena/genética , Genes de Plantas , Acetiltransferases/genética , Avena/enzimologia , Expressão Gênica , Genes Reporter , Glucuronidase/genética , Fenótipo , Plantas Geneticamente Modificadas , Poliploidia
11.
Plant Mol Biol ; 38(3): 347-56, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9747843

RESUMO

Regions of the sugarcane bacilliform badnavirus genome were tested for promoter activity. The genomic region spanning nucleotides 5999-7420 was shown to possess promoter activity as exemplified by its ability to drive the expression of the coding region of the uidA gene of Escherichia coli, in both Avena sativa and Arabidopsis thaliana. In A. sativa, the promoter was active in all organs examined and, with the exception of the anthers where the expression was localized, this activity was constitutive. In A. thaliana, the promoter activity was constitutive in the rosette leaf, stem, stamen, and root and limited primarily to vascular tissue in the sepal and the silique. The transgene was inherited and active in progeny plants of both A. sativa and A. thaliana.


Assuntos
Badnavirus/genética , Plantas/virologia , Regiões Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/virologia , Avena/genética , Avena/virologia , Sequência de Bases , Primers do DNA/genética , Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Genes Reporter , Genoma Viral , Glucuronidase/genética , Plantas/genética , Plantas Geneticamente Modificadas
12.
Plant Cell Rep ; 17(4): 284-287, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30736607

RESUMO

The Commelina yellow mottle virus (CoYMV) infects the monocot weed Commelina diffusa. The objective of this study was to investigate the transgene expression conferred by the CoYMV promoter in a monocot species. Friable, embryogenic oat (Avena sativa L.) tissue cultures were stably transformed with the CoYMV promoter fused to the coding region of E. coli ß-glucuronidase (uidA, GUS). Developmental and tissue-specific expression of the CoYMV-GUS construct was investigated in regenerated plants and their progeny. Histochemical GUS staining was primarily localized in the vascular tissues of shoots, leaves, floral bracts and in roots. While ovaries stained intensely, no staining was detected in anthers or the endosperm in mature seed. The scutellum of mature and germinating seed exhibited GUS activity.

13.
Phytopathology ; 88(10): 1013-9, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18944812

RESUMO

ABSTRACT Barley yellow dwarf viruses (BYDVs) are the most serious and widespread viruses of oats, barley, and wheat worldwide. Natural resistance is inadequate. Toward overcoming this limitation, we engineered virus-derived transgenic resistance in oat. Oat plants were transformed with the 5' half of the BYDV strain PAV genome, which includes the RNA-dependent RNA polymerase gene. In experiments on T2- and T3-generation plants descended from the same transformation event, all BYDV-inoculated plants containing the transgene showed disease symptoms initially, but recovered, flowered, and produced seed. In contrast, all but one of the BYDV-PAV-inoculated nontransgenic segregants died before reaching 25 cm in height. Although all of the recovered transgenic plants looked similar, the amount of virus and viral RNA ranged from substantial to undetectable levels. Thus, the transgene may act either by restricting virus accumulation or by a novel transgenic tolerance phenomenon. This work demonstrates a strategy for genetically stable transgenic resistance to BYDVs that should apply to all hosts of the virus.

14.
Biotechnol Prog ; 13(4): 347-54, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9265773

RESUMO

Transgenic suspension cultures of Black Mexican Sweet maize (Zea mays L.) expressing the Alcaligenes eutrophus genes encoding enzymes of the pathway for biosynthesis of the biodegradable polymer poly(beta-hydroxybutyrate) (PHB) were established as a tool for investigating metabolic regulation of the PHB pathway in plant cells. Cultures were grown in a 2 L modified mammalian cell bioreactor and in shake flasks. Biomass doubling times for transgenic bioreactor cultures (3.42 +/- 0.76 days) were significantly higher than those for untransformed cultures (2.01 +/- 0.33 days). Transgenic expression of the bacterial enzymes beta-ketothiolase (0.140 units/mg protein) and acetoacetyl-CoA reductase (0.636 units/mg protein) was detected by enzyme assays and immunoblots. However, over the first 2 years of cultivation, reductase activity decreased to 0.120 units/mg proteins. Furthermore, the PHB synthase gene, although initially present, was not detectable after 1.5 years of cultivation in suspension culture. These facts suggest that transgenic expression of PHB pathway genes in plant cells may not be stable. A hydroxybutyrate derivative was detected via gas chromatography even after 4 years of cultivation. Although the method used to prepare samples for gas chromatography cannot directly distinguish among PHB polymer, hydroxybutyryl-CoA (HB-CoA), and hydroxybutyric acid, solvent washing experiments indicated that most or all of the signal was non-polymeric, presumably H-CoA. The synthesis of HB-CoA appeared to be linked to substrate growth limitation, with HB-CoA accumulation increasing dramatically and cell growth ceasing upon depletion of ammonium. This suggests that the PHB synthesis pathway in plants is subject to regulatory mechanisms similar to those in prokaryotic cells.


Assuntos
Alcaligenes/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Zea mays/metabolismo , Concentração de Íons de Hidrogênio , Plantas Geneticamente Modificadas , Suspensões , Transformação Genética , Zea mays/genética
15.
Int J Biol Macromol ; 19(2): 121-30, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8842775

RESUMO

Poly[beta-hydroxybutyrate-co-beta-hydroxyvalerate] co-polymer, PHBV, is a polyhydroxyalkanoate (PHA) that has greater utility as a biodegradable thermoplastic polyester than poly-beta-hydroxybutyrate, PHB. In order to produce PHBV, a system of pathways is required to produce both hydroxybutyrate (HB) and hydroxyvalerate (HV) monomers from the sources of carbon. A working model for conversion of glucose to PHBV via acetyl- and propionyl-coenzyme A was constructed by expressing the PHA biosynthesis genes from Alcaligenes eutrophus in Escherichia coli strain K-12 under novel growth conditions. When 1 mM valine was added to 1% glucose medium, growth ceased and up to 2.5% of the incorporated monomers were HV; up to 4% were HV when 1 mM threonine was added as well. Threonine dehydratase (TD) converts threonine to alpha-ketobutyrate; TD is required for HV to be incorporated into PHA unless its transaminated reaction product, alpha-aminobutyrate, is added to the medium. Intracellular alpha-ketobutyrate accumulates when valine is added to the medium because valine, which cannot be metabolized to HV by E. coli strain K-12, stimulates TD and inhibits acetolactate synthase. In turn, alpha-ketobutyrate is converted to propionyl-CoA by the E. coli pyruvate dehydrogenase complex. This constitutes a defined system of pathways for synthesis of a heteropolymeric PHA from a single carbon source, which in the future could be transferred to other organisms including plants.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Acil Coenzima A/metabolismo , Alcaligenes/genética , Alcaligenes/metabolismo , Butiratos/metabolismo , Carbono/metabolismo , Divisão Celular , Meios de Cultura , Glucose/metabolismo , Hidroxibutiratos/metabolismo , Isoleucina/biossíntese , Ácidos Pentanoicos/metabolismo , Plasmídeos/genética , Complexo Piruvato Desidrogenase/metabolismo , Especificidade por Substrato , Treonina/metabolismo , Treonina Desidratase/metabolismo , Transformação Bacteriana , Valina/metabolismo
16.
Mol Biotechnol ; 6(1): 17-30, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8887358

RESUMO

Microprojectile bombardment to deliver DNA into plant cells represents a major breakthrough in the development of plant transformation technologies and accordingly has resulted in transformation of numerous species considered recalcitrant to Agrobacterium- or protoplast-mediated transformation methods. This article attempts to review the current understanding of the molecular and genetic behavior of transgenes introduced by microprojectile bombardment. The characteristic features of the transgene integration pattern resulting from DNA delivery via microprojectile bombardment include integration of the full length transgene as well as rearranged copies of the introduced DNA. Copy number of both the transgene and rearranged fragments is often highly variable. Most frequently the multiple transgene copies and rearranged fragments are inherited as a single locus. However, a variable proportion of transgenic events produced by microprojectile bombardment exhibit Mendelian ratios for monogenic and digenic segregation vs events exhibiting segregation distortion. The potential mechanisms underlying these observations are discussed.


Assuntos
Técnicas de Transferência de Genes , Plantas Geneticamente Modificadas/genética , Transgenes , Animais , Engenharia Genética
17.
Proc Natl Acad Sci U S A ; 93(5): 1962-6, 1996 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-8700867

RESUMO

Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.


Assuntos
Hidroliases/química , Zea mays/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , DNA Complementar/genética , Inibidores Enzimáticos/farmacologia , Hidroliases/antagonistas & inibidores , Cinética , Lisina/química , Dados de Sequência Molecular , Proteínas de Plantas/química , Mutação Puntual , Alinhamento de Sequência , Relação Estrutura-Atividade
18.
Theor Appl Genet ; 92(1): 70-7, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166118

RESUMO

Lysine is one of the nutritionally limiting amino acids in food and feed products made from maize (Zea mays L.). Two enzymes in the lysine biosynthesis pathway, aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS), have primary roles in regulating the level of lysine accumulation in plant cells because both enzymes are feedback-inhibited by lysine. An isolated cDNA clone for maize DHPS was modified to encode a DHPS much less sensitive to lysine inhibition. The altered DHPS cDNA was transformed into maize cell suspension cultures to determine the effect on DHPS activity and lysine accumulation. Partially purified DHPS (wildtype plus mutant) from transformed cultures was less sensitive to lysine inhibition than wild-type DHPS from nontransformed cultures. Transformed cultures had cellular free lysine levels as much as four times higher than those of nontransformed controls. Thus, we have shown that reducing the feedback inhibition of DHPS by lysine can lead to increased lysine accumulation in maize cells. Increasing the capacity for lysine synthesis may be an important step in improving the nutritional quality of food and feed products made from maize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...