Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 24(1): 90, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956464

RESUMO

BACKGROUND: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. RESULTS: We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii's trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. CONCLUSIONS: Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids' increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.


Assuntos
Mudança Climática , Decapodiformes , Ecossistema , Cadeia Alimentar , Animais , Regiões Árticas , Mudança Climática/história , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Dieta/história
2.
Glob Chang Biol ; 30(1): e17124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273488

RESUMO

The marine biological carbon pump (BCP) stores carbon in the ocean interior, isolating it from exchange with the atmosphere and thereby coregulating atmospheric carbon dioxide (CO2 ). As the BCP commonly is equated with the flux of organic material to the ocean interior, termed "export flux," a change in export flux is perceived to directly impact atmospheric CO2 , and thus climate. Here, we recap how this perception contrasts with current understanding of the BCP, emphasizing the lack of a direct relationship between global export flux and atmospheric CO2 . We argue for the use of the storage of carbon of biological origin in the ocean interior as a diagnostic that directly relates to atmospheric CO2 , as a way forward to quantify the changes in the BCP in a changing climate. The diagnostic is conveniently applicable to both climate model data and increasingly available observational data. It can explain a seemingly paradoxical response under anthropogenic climate change: Despite a decrease in export flux, the BCP intensifies due to a longer reemergence time of biogenically stored carbon back to the ocean surface and thereby provides a negative feedback to increasing atmospheric CO2 . This feedback is notably small compared with anthropogenic CO2 emissions and other carbon-climate feedbacks. In this Opinion paper, we advocate for a comprehensive view of the BCP's impact on atmospheric CO2 , providing a prerequisite for assessing the effectiveness of marine CO2 removal approaches that target marine biology.


Assuntos
Dióxido de Carbono , Proteínas de Membrana Transportadoras , Dióxido de Carbono/análise , Atmosfera , Mudança Climática , Oceanos e Mares
3.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848574

RESUMO

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Efeitos Antropogênicos , Oceano Índico
4.
Front Microbiol ; 12: 690200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489886

RESUMO

The ability of marine diazotrophs to fix dinitrogen gas (N2) is one of the most influential yet enigmatic processes in the ocean. With their activity diazotrophs support biological production by fixing about 100-200 Tg N/year and turning otherwise unavailable dinitrogen into bioavailable nitrogen (N), an essential limiting nutrient. Despite their important role, the factors that control the distribution of diazotrophs and their ability to fix N2 are not fully elucidated. We discuss insights that can be gained from the emerging picture of a wide geographical distribution of marine diazotrophs and provide a critical assessment of environmental (bottom-up) versus trophic (top-down) controls. We expand a simplified theoretical framework to understand how top-down control affects competition for resources that determine ecological niches. Selective mortality, mediated by grazing or viral-lysis, on non-fixing phytoplankton is identified as a critical process that can broaden the ability of diazotrophs to compete for resources in top-down controlled systems and explain an expanded ecological niche for diazotrophs. Our simplified analysis predicts a larger importance of top-down control on competition patterns as resource levels increase. As grazing controls the faster growing phytoplankton, coexistence of the slower growing diazotrophs can be established. However, these predictions require corroboration by experimental and field data, together with the identification of specific traits of organisms and associated trade-offs related to selective top-down control. Elucidation of these factors could greatly improve our predictive capability for patterns and rates of marine N2 fixation. The susceptibility of this key biogeochemical process to future changes may not only be determined by changes in environmental conditions but also via changes in the ecological interactions.

5.
Ecology ; 102(3): e03265, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33330981

RESUMO

Nitrogen and carbon stable isotope data sets are commonly used to assess complex population to ecosystem responses to natural or anthropogenic changes at regional to global spatial scales, and monthly to decadal timescales. Measured in the tissues of consumers, nitrogen isotopes (δ15 N) are primarily used to estimate trophic position while carbon isotopes (δ13 C) describe habitat associations and feeding pathways. Models of both δ15 N and δ13 C values and their associated variance can be used to estimate likely dietary contributions and niche width and provide inferences about consumer movement and migration. Stable isotope data have added utility when used in combination with other empirical data sets (e.g., stomach content, movement tracking, bioregionalization, contaminant, or fisheries data) and are increasingly relied upon in food web and ecosystem models. While numerous regional studies publish tables of mean δ15 N and δ13 C values, limited individual records have been made available for wider use. Such a deficiency has impeded full utility of the data, which otherwise would facilitate identification of macroscale patterns. The data provided here consist of 4,498 records of individuals of three tuna species, Thunnus alalunga, T. obesus, and T. albacares sampled from all major ocean basins from 2000 to 2015. For each individual tuna, we provide a record of the following: species name, sampling date, sampling location, tuna length, muscle bulk and baseline corrected δ15 N values, and muscle bulk and, where available, lipid corrected δ13 C values. We provide these individual records to support comparative studies and more robust modeling projects seeking to improve understanding of complex marine ecosystem dynamics and their responses to a changing environment. There are no copyright restrictions for research and/or teaching purposes. Users are requested to acknowledge their use of the data in publications, research proposals, websites, and other outlets following the citation instructions in Class III, Section B.

6.
Chemosphere ; 263: 128024, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297047

RESUMO

Global anthropogenic mercury (Hg) emissions to the atmosphere since industrialization are widely considered to be responsible for a significant increase in surface ocean Hg concentrations. Still unclear is how those inputs are converted into toxic methylmercury (MeHg) then transferred and biomagnified in oceanic food webs. We used a unique long-term and continuous dataset to explore the temporal Hg trend and variability of three tropical tuna species (yellowfin, bigeye, and skipjack) from the southwestern Pacific Ocean between 2001 and 2018 (n = 590). Temporal trends of muscle nitrogen (δ15N) and carbon (δ13C) stable isotope ratios, amino acid (AA) δ15N values and oceanographic variables were also investigated to examine the potential influence of trophic, biogeochemical and physical processes on the temporal variability of tuna Hg concentrations. For the three species, we detected significant inter-annual variability but no significant long-term trend for Hg concentrations. Inter-annual variability was related to the variability in tuna sampled lengths among years and to tuna muscle δ15N and δ13C values. Complementary AA- and model-estimated phytoplankton δ15N values suggested the influence of baseline processes with enhanced tuna Hg concentrations observed when dinitrogen fixers prevail, possibly fuelling baseline Hg methylation and/or MeHg bioavailability at the base of the food web. Our results show that MeHg trends in top predators do not necessary capture the increasing Hg concentrations in surface waters suspected at the global oceanic scale due to the complex and variable processes governing Hg deposition, methylation, bioavailability and biomagnification. This illustrates the need for long-term standardized monitoring programs of marine biota worldwide.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Cadeia Alimentar , Mercúrio/análise , Oceanos e Mares , Oceano Pacífico , Atum , Poluentes Químicos da Água/análise
7.
Glob Chang Biol ; 26(2): 458-470, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578765

RESUMO

Considerable uncertainty remains over how increasing atmospheric CO2 and anthropogenic climate changes are affecting open-ocean marine ecosystems from phytoplankton to top predators. Biological time series data are thus urgently needed for the world's oceans. Here, we use the carbon stable isotope composition of tuna to provide a first insight into the existence of global trends in complex ecosystem dynamics and changes in the oceanic carbon cycle. From 2000 to 2015, considerable declines in δ13 C values of 0.8‰-2.5‰ were observed across three tuna species sampled globally, with more substantial changes in the Pacific Ocean compared to the Atlantic and Indian Oceans. Tuna recorded not only the Suess effect, that is, fossil fuel-derived and isotopically light carbon being incorporated into marine ecosystems, but also recorded profound changes at the base of marine food webs. We suggest a global shift in phytoplankton community structure, for example, a reduction in 13 C-rich phytoplankton such as diatoms, and/or a change in phytoplankton physiology during this period, although this does not rule out other concomitant changes at higher levels in the food webs. Our study establishes tuna δ13 C values as a candidate essential ocean variable to assess complex ecosystem responses to climate change at regional to global scales and over decadal timescales. Finally, this time series will be invaluable in calibrating and validating global earth system models to project changes in marine biota.


Assuntos
Fitoplâncton , Atum , Animais , Isótopos de Carbono , Ecossistema , Oceano Índico , Oceanos e Mares , Oceano Pacífico
8.
Nat Commun ; 9(1): 1217, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572447

RESUMO

Anthropogenic impacts are perturbing the global nitrogen cycle via warming effects and pollutant sources such as chemical fertilizers and burning of fossil fuels. Understanding controls on past nitrogen inventories might improve predictions for future global biogeochemical cycling. Here we show the quantitative reconstruction of deglacial bottom water nitrate concentrations from intermediate depths of the Peruvian upwelling region, using foraminiferal pore density. Deglacial nitrate concentrations correlate strongly with downcore δ13C, consistent with modern water column observations in the intermediate Pacific, facilitating the use of δ13C records as a paleo-nitrate-proxy at intermediate depths and suggesting that the carbon and nitrogen cycles were closely coupled throughout the last deglaciation in the Peruvian upwelling region. Combining the pore density and intermediate Pacific δ13C records shows an elevated nitrate inventory of >10% during the Last Glacial Maximum relative to the Holocene, consistent with a δ13C-based and δ15N-based 3D ocean biogeochemical model and previous box modeling studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...