Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38924074

RESUMO

INTRODUCTION: Physical activity (PA) during pregnancy has numerous benefits, which may be mediated via effects on the immune system. However, supportive evidence is inconsistent and is mainly from studies in high-risk groups. We estimated the effect of PA during pregnancy on systemic inflammatory markers and cytokines in mothers recruited in the Barwon infant study. MATERIAL AND METHODS: The Barwon infant study is a prebirth cohort of 1064 mothers recruited in the Barwon Region of Victoria, Australia. Participants reported their previous week's PA at their 28-week antenatal appointment using the International PA Questionnaire. Women were grouped into low, moderate, and high PA categories based on daily duration and weekly frequency of walking, moderate- or vigorous-intensity PA. Women reporting moderate levels of PA, consistent with current recommendations, served as the comparison group. Markers of systemic inflammation, high-sensitivity C-reactive protein (hsCRP), glycoprotein acetyls (GlycA), and 17 cytokines were measured at 28 weeks gestation and log transformed as appropriate. Regression analyses adjusted for maternal smoking, gestational diabetes mellitus, prepregnancy BMI, and household size were performed. RESULTS: Compared to women in the moderate group (n = 371, 42%), women reporting low PA (n = 436, 50%) had 10.1% higher hsCRP (95% CI (3.7% to 16.6%), p < 0.01) while women in high PA (n = 76, 9%) had a 14% higher hsCRP (95% CI (3.1% to 24.8%), p = 0.01). Women in the high PA category had higher interleukin (IL)-4 (q = 0.03) and IL-9 (q = 0.03) levels compared to those in moderate category. Each vigorous MET minute/week was associated with lower GlycA (ß = -0.004, 95% CI (-0.044 to 0.035); p = 0.03). CONCLUSIONS: Low and high PA are each associated with higher hsCRP than moderate PA, suggesting that undertaking the recommended moderate PA during pregnancy decreases systemic inflammation. High PA affects T cell-associated cytokines during pregnancy. Evidence from our study suggests that PA can modulate the immune responses during pregnancy. Studies are now required to assess whether PA during pregnancy impacts maternal and infant clinical outcomes by modifying inflammatory responses.

2.
Neurobiol Aging ; 140: 22-32, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703636

RESUMO

Aging is associated with a priming of microglia such that they are hypersensitive to further immune challenges. As such high-fat diet during aging can have detrimental effects on cognition that is not seen in the young. However, conflicting findings also suggest that obesity may protect against cognitive decline during aging. Given this uncertainty we aimed here to examine the role of microglia in high-fat, high-sucrose diet (HFSD)-induced changes in cognitive performance in the aging brain. We hypothesised that 8 weeks of HFSD-feeding would alter microglia and the inflammatory milieu in aging and worsen aging-related cognitive deficits in a microglia-dependent manner. We found that both aging and HFSD reduced hippocampal neuron numbers and open field exploration; they also impaired recognition memory. However, the aging-related deficits occurred in the absence of a pro-inflammatory response and the deficits in memory performance persisted after depletion of microglia in the Cx3cr1-Dtr knock-in rat. Our data suggest that mechanisms additional to the acute microglial contribution play a role in aging- and HFSD-associated memory dysfunction.


Assuntos
Envelhecimento , Dieta Hiperlipídica , Hipocampo , Transtornos da Memória , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Envelhecimento/psicologia , Envelhecimento/fisiologia , Envelhecimento/patologia , Transtornos da Memória/etiologia , Hipocampo/patologia , Feminino , Neurônios , Disfunção Cognitiva/etiologia , Memória/fisiologia , Ratos , Cognição
3.
Neurosci Biobehav Rev ; 162: 105724, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762130

RESUMO

Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.


Assuntos
Envelhecimento , Doença de Alzheimer , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Humanos , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Animais , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Inflamação/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia
4.
Front Neurol ; 14: 989132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745672

RESUMO

Hyper-activity of the brain's innate immune cells, microglia, is a hallmark of multiple sclerosis (MS). However, it is not clear whether this involvement of microglia is beneficial or detrimental or whether manipulating microglial activity may be therapeutic. We investigated if inhibiting microglial activity with minocycline prevents the early changes in oligodendrocyte and myelin-related markers associated with a demyelinating challenge in adult female and male rats. Cuprizone reduced the expression of myelin and oligodendrocyte genes in both females and males, reflective of cuprizone intoxication and the early phases demyelination, and reduced the number of oligodendrocytes in the corpus callosum. However, we see notable differences in the role for microglia in this response between females and males. In males, myelin and oligodendrocyte genes, as well as oligodendrocytes were also reduced by minocycline treatment; an effect that was not seen in females. In males, but not females, early changes in oligodendrocyte and myelin-related genes were associated with microglial proliferation in corpus callosum, and this increase was reversed by minocycline. These data indicate sex-specific effects of inhibiting microglia on the early changes leading to demyelination in an MS model and suggest microglia may play a key role in myelin stability in males but not in females. This highlights a strong need for sex-specific understanding of disease development in MS and suggest that treatments targeting microglia may be more effective in males than in females due to differing mechanisms of disease progression.

5.
Brain Behav Immun ; 113: 189-202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437818

RESUMO

BACKGROUND: Pre-pregnancy obesity is an emerging risk factor for perinatal depression. However, the underlying mechanisms remain unclear. We investigated the association between pre-pregnancy body mass index (BMI) and perinatal depressive symptoms in a large population-based pre-birth cohort, the Barwon Infant Study. We also assessed whether the levels of circulating inflammatory markers during pregnancy mediated this relationship. METHODS: Depressive symptoms were assessed in 883 women using the Edinburgh Postnatal Depression Scale (EPDS) and psychological stress using the Perceived Stress Scale (PSS) at 28 weeks gestation and 4 weeks postpartum. Glycoprotein acetyls (GlycA), high-sensitivity C-reactive protein (hsCRP) and cytokines were assessed at 28 weeks gestation. We performed regression analyses, adjusted for potential confounders, and investigated mediation using nested counterfactual models. RESULTS: The estimated effect of pre-pregnancy obesity (BMI ≥ 30 kg/m2) on antenatal EPDS scores was 1.05 points per kg/m2 increase in BMI (95% CI: 0.20, 1.90; p = 0.02). GlycA, hsCRP, interleukin (IL) -1ra and IL-6 were higher in women with obesity, compared to healthy weight women, while eotaxin and IL-4 were lower. Higher GlycA was associated with higher EPDS and PSS scores and partially mediated the association between pre-pregnancy obesity and EPDS/PSS scores in unadjusted models, but this association attenuated upon adjustment for socioeconomic adversity. IL-6 and eotaxin were negatively associated with EPDS/PSS scores, however there was no evidence for mediation. CONCLUSIONS: Pre-pregnancy obesity increases the risk of antenatal depressive symptoms and is also associated with systemic inflammation during pregnancy. While discrete inflammatory markers are associated with antenatal depressive symptoms and perceived stress, their role in mediating the effects of pre-pregnancy obesity on antenatal depression requires further investigation.


Assuntos
Depressão Pós-Parto , Complicações na Gravidez , Lactente , Feminino , Gravidez , Humanos , Depressão/diagnóstico , Proteína C-Reativa , Interleucina-6 , Obesidade/complicações , Fatores de Risco , Inflamação , Complicações na Gravidez/psicologia
6.
Brain Behav Immun ; 107: 179-192, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270436

RESUMO

Microglia have long been thought to be responsible for the initiation of the central nervous system (CNS) immune response to pathogen exposure. However, we recently reported that depleting CNS microglia and circulating monocytes does not abrogate the sickness response in male rats or mice to bacterial endotoxin, lipopolysaccharide (LPS). How the central immune response to an endotoxin challenge is initiated and resolved in the absence of microglia and monocytes remains unclear. Here we investigated the role of microglia and monocytes in driving the behavioral, febrile and neuroimmune response to LPS using the Cx3cr1-Dtr rat model of conditional microglia/monocyte depletion, assessed if this role is similar in females and males, and examined how the response to an immune challenge might be initiated in the absence of these cells. We show that depletion of microglia and monocytes exacerbates the response to LPS at each phase of the immune cascade. Our data indicate that the changes in the central response to immune challenge may be an indirect effect of excess neutrophil expansion into the bloodstream and infiltration into peripheral organs stimulating a rapid and exacerbated cytokine and prostaglandin response to the LPS that is not curtailed by the usual negative feedback mechanisms. Thus, we show that a demonstrable immune response can be generated (and resolved) in the near complete absence of microglia and monocytes and that these cells play a regulatory role in the initiation and resolution of the response to an immune challenge, rather than being critical for it to occur.


Assuntos
Imunidade , Monócitos , Feminino , Masculino , Ratos , Camundongos , Animais
7.
Eur Neuropsychopharmacol ; 64: 32-43, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191545

RESUMO

Advances in psychopharmacology have been significantly slower to evolve than in other disciplines of medicine and therefore investigation into novel therapeutic approaches is required. Additionally, concurrent metabolic conditions are prevalent among people with mental disorders. Metformin is a widely used hypoglycaemic agent that is now being studied for use beyond diabetes management. Evidence is emerging that metformin has multiple effects on diverse neurobiological pathways and consequently may be repurposed for treating mental illness. Metformin may have beneficial neuroimmunological, neuroplastic, neuro-oxidative and neuro-nitrosative effects across a range of psychiatric and neurodegenerative illnesses. Mechanisms include glucose lowering effects and effects on AMP-activated protein kinase (AMPK) signalling, however the best evidence for clinical benefit is through the glucose lowering effects, with other mechanisms less supported by the current evidence base. This narrative review aims to draw together the existing evidence for use of metformin as a psychopharmaceutical and present the role of metformin in the context of physical and psychiatric ill health, including metabolic, endocrinological and cancer domains. It not only has therapeutic potential in medical comorbidity but may have potential in core illness domains.

8.
J Endocrinol ; 254(2): 103-119, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35670374

RESUMO

Early life microglia are essential for brain development, and developmental disruption in microglial activity may have long-term implications for the neuroendocrine control of reproduction. We and others have previously shown that early life immune activation compromises the long-term potential for reproductive function in females. However, the supportive role of microglia in female reproductive development is still unknown. Here, we examined the long-term programming effects of transient neonatal microglial and monocyte ablation on hypothalamic-pituitary-gonadal (HPG) axis function in female rats. We employed a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia and monocytes, commencing on either postnatal day (P) 7 or 14, since the development of the HPG axis in female rodents primarily occurs during the first two to three postnatal weeks. After an acutely diminished expression of microglia and monocyte genes in the brain and ovaries, respectively, microglia had repopulated the brain by P21, albeit that cellular complexity was still reduced in both groups at this time. Removal of microglia and monocytes on P7, but not P14 reduced circulating luteinising hormone levels in adulthood and ovarian gonadotropin receptors mRNA. These changes were notably associated with fewer primary and antral follicles in these rats. These data suggest that transient ablation of microglia and monocytes at the start of the second but not the third postnatal week has long-term effects on ovarian health. The findings highlight the important developmental role of a healthy immune system for female potential reproductive capacity and the importance of critical developmental periods to adult ovarian health.


Assuntos
Microglia , Monócitos , Animais , Feminino , Microglia/metabolismo , Monócitos/metabolismo , Folículo Ovariano , Ovário , Ratos , Ratos Wistar
9.
Mol Neurobiol ; 59(6): 3485-3503, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347586

RESUMO

The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.


Assuntos
Transtorno Depressivo Maior , MicroRNAs , Esquizofrenia , Amidoidrolases/metabolismo , Endocanabinoides/metabolismo , Humanos , Inflamação , MicroRNAs/metabolismo , Monoacilglicerol Lipases/metabolismo , Estresse Oxidativo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
10.
Mol Cell Endocrinol ; 536: 111418, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339824

RESUMO

Our recent findings indicate that an acute depletion of monocytes has no sustained effects on ovarian follicle health. Here, we utilised a Cx3cr1-Dtr transgenic Wistar rat model to transiently deplete monocytes and investigated the impact of an acute immune challenge by lipopolysaccharide (LPS) on ovarian follicle health and ovulatory capacity relative to wt once the monocytes had repopulated. Monocyte depletion and repopulation exacerbated the effects of LPS in several domains. As such, monocyte perturbation decreased the numbers of secondary follicles in those challenged with LPS. Monocyte perturbation was also associated with reduced antral follicle numbers and circulating luteinising hormone (LH) levels, as well as potential changes in ovarian sensitivity to LH, exacerbated by LPS. These data suggest that monocyte depletion and repopulation induce a transient suppression of ovulatory capacity in response to a subsequent immune challenge, but this is likely to be restored once the pro-inflammatory environment is resolved.


Assuntos
Receptor 1 de Quimiocina CX3C/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Lipopolissacarídeos/efeitos adversos , Folículo Ovariano/metabolismo , Animais , Feminino , Leucócitos Mononucleares , Lipopolissacarídeos/imunologia , Hormônio Luteinizante/sangue , Hormônio Luteinizante/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/imunologia , Regiões Promotoras Genéticas , Ratos , Ratos Transgênicos , Ratos Wistar
11.
Brain Behav Immun ; 98: 185-197, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418500

RESUMO

The implications of poor maternal diet on offspring metabolic and neuroimmune development are well established. Increasing evidence now suggests that maternal obesity and poor diet can also increase the risk of postpartum mood disorders, but the mechanisms are unknown. Here we investigated the effects of a poor, high-fat-high-sugar diet (HFSD) on peripheral and central inflammation, neurogenesis and postpartum anxiety-like behaviours. We hypothesised that long-term consumption of a HFSD pre- and post-conception would increase the levels of circulating cytokines and induce microglial activation, particularly in the arcuate nucleus of the hypothalamus (ARC), as the primary brain region involved in the integration of satiety signalling; and this would lead to increased anxiety, stress responsivity and disrupted neurogenesis. We further hypothesised that these effects would be ameliorated by consumption of a healthier diet during pregnancy - specifically a diet high in omega-3 polyunsaturated fatty acids (PUFAs). As expected, the HFSD significantly increased pre-conception body weight, elevated circulating cytokines and activated microglia in the ARC, as well as in the basolateral amygdala. The HFSD also significantly increased the numbers of immature (doublecortin (DCX)-positive) neurons in the subgranular/granular region of the hippocampus, a neurogenic response that was, surprisingly, mimicked by consumption of a diet high in omega-3 PUFAs. Despite these effects of peri-pregnancy dietary imbalance, we detected no differences in anxiety-like behaviours or hypothalamic-pituitary-adrenal (HPA) axis reactivity between the groups. A shift to a healthier diet post-conception reversed the peripheral inflammation and alleviated the microglial activation. These novel data indicate the importance of a balanced peri-pregnancy diet and highlight the need for future research into key triggers that alter the neuroimmune balance in the maternal brain.


Assuntos
Microglia , Neurogênese , Animais , Dieta Hiperlipídica , Feminino , Hipocampo , Humanos , Período Pós-Parto , Gravidez , Ratos
13.
J Allergy Clin Immunol ; 148(3): 669-678, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310928

RESUMO

Environmental exposures during pregnancy that alter both the maternal gut microbiome and the infant's risk of allergic disease and asthma include a traditional farm environment and consumption of unpasteurized cow's milk, antibiotic use, dietary fiber, and psychosocial stress. Multiple mechanisms acting in concert may underpin these associations and prime the infant to acquire immune competence and homeostasis following exposure to the extrauterine environment. Cellular and metabolic products of the maternal gut microbiome can promote the expression of microbial pattern recognition receptors, as well as thymic and bone marrow hematopoiesis relevant to regulatory immunity. At birth, transmission of maternally derived bacteria likely leverages this in utero programming to accelerate postnatal transition from a TH2- to TH1- and TH17-dominant immune phenotype and maturation of regulatory immune mechanisms, which in turn reduce the child's risk of allergic disease and asthma. Although our understanding of these phenomena is rapidly evolving, the field is relatively nascent, and we are yet to translate existing knowledge into interventions that substantially reduce disease risk in humans. Here, we review evidence that the maternal gut microbiome impacts the offspring's risk of allergic disease and asthma, discuss challenges and future directions for the field, and propose the hypothesis that maternal carriage of Prevotella copri during pregnancy decreases the offspring's risk of allergic disease via production of succinate, which in turn promotes bone marrow myelopoiesis of dendritic cell precursors in the fetus.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade/epidemiologia , Animais , Suplementos Nutricionais , Feminino , Humanos , Recém-Nascido , Gravidez , Probióticos , Risco
14.
Biol Reprod ; 105(1): 100-112, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33709094

RESUMO

Monocytes and macrophages are the most abundant immune cell populations in the adult ovary, with well-known roles in ovulation and corpus luteum formation and regression. They are activated and proliferate in response to immune challenge and are suppressed by anti-inflammatory treatments. It is also likely they have a functional role in the healthy ovary in supporting the maturing follicle from the primordial through to the later stages; however, this role has been unexplored until now. Here, we utilized a Cx3cr1-Dtr transgenic Wistar rat model that allows a conditional depletion of circulating monocytes, to investigate their role in ovarian follicle health. Our findings show that circulating monocyte depletion leads to a significant depletion of ovarian monocytes and monocyte-derived macrophages. Depletion of monocytes was associated with a transient reduction in circulating anti-Müllerian hormone (AMH) at 5 days postdepletion. However, the 50-60% ovarian monocyte/macrophage depletion had no effect on ovarian follicle numbers, follicle atresia, or apoptosis, within 5-21 days postdepletion. These data reveal that the healthy adult ovary is remarkably resistant to perturbations of circulating and ovarian monocytes despite acute changes in AMH. These data suggest that short-term anti-inflammatory therapies that transiently impact on circulating monocytes are unlikely to disrupt ovarian follicle health, findings that have significant implications for fertility planning relative to the experience of an immune challenge or immunosuppression.


Assuntos
Hormônio Antimülleriano/imunologia , Monócitos/fisiologia , Folículo Ovariano/fisiologia , Animais , Feminino , Ratos , Ratos Transgênicos , Ratos Wistar
15.
FASEB J ; 35(2): e21195, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33200466

RESUMO

Microglia, the key neuroimmune cells of the central nervous system, are best known for their function in defending an individual from pathogens and injury. Recent findings, including our own, suggest microglia also have several immune-independent roles, including in regulating satiety, promoting memory, and modifying pain responses. Many of these microglia-associated functions are affected by circadian rhythmicity, thus, varying substantially depending upon the time of day. To gain further insight into this link, we used a Cx3cr1-Dtr transgenic Wistar rat model to acutely deplete microglia and examined if this could lead to a disruption in diurnal temperature, metabolism, and activity measures. We also examined if differences in the physiological rhythms corresponded with changes in the expression of key circadian rhythm-regulating genes and proteins. Our data show that in the absence of microglia there is a pronounced disruption of diurnal rhythms in several domains consistent with a shift toward the inactive phase, in conjunction with changes in circadian rhythm-regulating genes and proteins. These data suggest microglia are involved in the regulation of circadian rhythms and indicate an exciting potential to manipulate these cells to improve disrupted circadian rhythms such as with shift-work or jet-lag.


Assuntos
Ciclos de Atividade , Ritmo Circadiano , Microglia/metabolismo , Animais , Temperatura Corporal , Encéfalo/citologia , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Masculino , Movimento , Ratos , Ratos Wistar
17.
J Neuroinflammation ; 17(1): 172, 2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32475344

RESUMO

BACKGROUND: Production of inflammatory mediators by reactive microglial cells in the brain is generally considered the primary mechanism underlying the development of symptoms of sickness in response to systemic inflammation. METHODS: Depletion of microglia was achieved in C57BL/6 mice by chronic oral administration of PLX5622, a specific antagonist of colony stimulating factor-1 receptor, and in rats by a knock-in model in which the diphtheria toxin receptor was expressed under the control of the endogenous fractalkine receptor (CX3CR1) promoter sequence. After successful microglia depletion, mice and rats were injected with a sickness-inducing dose of lipopolysaccharide according to a 2 (depletion vs. control) × 2 (LPS vs. saline) factorial design. Sickness was measured by body weight loss and decreased locomotor activity in rats and mice, and reduced voluntary wheel running in mice. RESULTS: Chronic administration of PLX5622 in mice and administration of diphtheria toxin to knock-in rats depleted microglia and peripheral tissue macrophages. However, it did not abrogate the inducible expression of proinflammatory cytokines in the brain in response to LPS and even exacerbated it for some of the cytokines. In accordance with these neuroimmune effects, LPS-induced sickness was not abrogated, rather it was exacerbated when measured by running wheel activity in mice. CONCLUSIONS: These findings reveal that the sickness-inducing effects of acute inflammation can develop independently of microglia activation.


Assuntos
Encéfalo/imunologia , Comportamento de Doença/fisiologia , Inflamação/imunologia , Microglia , Animais , Encéfalo/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
18.
Brain Behav Immun ; 88: 675-687, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360602

RESUMO

Microglia are resident immune cells of the central nervous system (CNS). In adulthood they are involved in surveillance and responses to pathogens and injury and prenatally they play a role in brain development. However, the role of microglia during the early postnatal period and how they impact development long-term remains poorly understood. Here, to investigate the specific role of microglia in postnatal development, we used a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia from either postnatal day (P) 7 or 14. We specifically assessed how transient microglial ablation affected astrocytes and neurons acutely, during the juvenile period, and in adulthood. Hippocampal microglial numbers remained low at P21 in the P7-ablated animals and complexity remained reduced after P14-ablation. This protracted effect on these key immune cells led to a small but significant increase in CA1 mature neuron numbers and a significant increase in astrocyte density in the subgranular dentate gyrus in adults that had their microglia ablated at P14. However, these histological differences were small, and spatial and recognition memory in novel objection and place recognition tests were not affected. Overall, our data reveal for the first time that the transient depletion of microglia during the neonatal period impacts briefly on the brain but that the long-lasting effects are minimal. Neonatal microglia may be dispensable in the establishment of hippocampal brain function. These data also imply that novel therapeutic anti-inflammatories that cross the blood-brain barrier to inhibit microglia are unlikely to have long-term negative consequences if administered in the neonatal period.


Assuntos
Hipocampo , Memória , Microglia , Animais , Animais Recém-Nascidos , Neurônios , Ratos , Ratos Wistar
20.
J Neuroendocrinol ; 32(3): e12838, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097992

RESUMO

Microglia have been known for decades as key immune cells that shape the central nervous system (CNS) during development and respond to brain pathogens and injury in adult life. Recent findings now suggest that these cells also play a highly complex role in several other functions of the CNS. In this review, we provide a brief overview of the established microglial functions in development and disease. We also discuss emerging research suggesting that microglia are important for both cognitive function and the regulation of food intake. With respect to cognitive function, current data suggest microglia are not indispensable for neurogenesis, synaptogenesis or cognition in the healthy young adult, although they crucially modulate and support these functions. In doing so, they are likely important in supporting the balance between apoptosis and survival of newborn neurones and in orchestrating appropriate synaptic remodelling in response to a learning stimulus. We also explore the possibility of a role for microglia in feeding and satiety. Microglia have been implicated in both appetite suppression with sickness and obesity and in promoting feeding under some conditions and we discuss these findings here, highlighting the contribution of these cells to healthy brain function.


Assuntos
Cognição/fisiologia , Microglia/fisiologia , Neurônios/fisiologia , Saciação/fisiologia , Animais , Encéfalo/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...