Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4856, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418539

RESUMO

Green infrastructure has been widely recognized for the benefits to human health and biodiversity conservation. However, knowledge of the qualities and requirements of such spaces and structures for the effective delivery of the range of ecosystem services expected is still limited, as well as the identification of trade-offs between services. In this study, we apply the One Health approach in the context of green spaces to investigate how urban park characteristics affect human mental health and wildlife support outcomes and identify synergies and trade-offs between these dimensions. Here we show that perceived restorativeness of park users varies significantly across sites and is mainly affected by safety and naturalness perceptions. In turn, these perceptions are driven by objective indicators of quality, such as maintenance of facilities and vegetation structure, and subjective estimations of biodiversity levels. The presence of water bodies benefited both mental health and wildlife. However, high tree canopy coverage provided greater restoration potential whereas a certain level of habitat heterogeneity was important to support a wider range of bird species requirements. To reconcile human and wildlife needs in green spaces, cities should strategically implement a heterogeneous green infrastructure network that considers trade-offs and maximizes synergies between these dimensions.


Assuntos
Animais Selvagens , Ecossistema , Animais , Humanos , Parques Recreativos , Saúde Mental , Biodiversidade , Conservação dos Recursos Naturais
2.
Sci Total Environ ; 748: 141589, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113695

RESUMO

Green infrastructure improves environmental health in cities, benefits human health, and provides habitat for wildlife. Increasing urbanization has demanded the expansion of urban areas and transformation of existing cities. The adoption of compact design in urban planning is a recommended strategy to minimize environmental impacts; however, it may undermine green infrastructure networks within cities as it sets a battleground for urban space. Under this scenario, multifunctionality of green spaces is highly desirable but reconciling human needs and biodiversity conservation in a limited space is still a challenge. Through a systematic review, we first compiled urban green space's characteristics that affect mental health and urban wildlife support, and then identified potential synergies and trade-offs between these dimensions. A framework based on the One Health approach is proposed, synthesizing the interlinkages between green space quality, mental health, and wildlife support; providing a new holistic perspective on the topic. Looking at the human-wildlife-environment relationships simultaneously may contribute to practical guidance on more effective green space design and management that benefit all dimensions.

3.
Proc Biol Sci ; 277(1692): 2271-80, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20335215

RESUMO

Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.


Assuntos
Biodiversidade , Ecossistema , Aquecimento Global , Modelos Biológicos , Desenvolvimento Vegetal , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...