Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527027

RESUMO

Worldwide, tuberculosis (TB) is the leading cause of death due to infection with a single pathogenic agent, Mycobacterium tuberculosis In the absence of an effective vaccine, new, more powerful antibiotics are required to halt the growing spread of multidrug-resistant strains and to shorten the duration of TB treatment. However, assessing drug efficacy at the preclinical stage remains a long and fastidious procedure that delays progression of drugs down the pipeline and towards the clinic. In this investigation, we report the construction, optimization and characterization of genetically engineered near-infrared (NIR) fluorescent reporter strains of the pathogens Mycobacterium marinum and Mycobacterium tuberculosis that enable direct visualization of bacteria in infected zebrafish and mice, respectively. Fluorescence could be measured precisely in infected immunodeficient mice, while its intensity appeared to be below the limit of detection in immunocompetent mice, probably because of the lower bacterial load obtained in these animals. Furthermore, we show that the fluorescence level accurately reflects the bacterial load, as determined by colony forming unit (CFU) enumeration, thus enabling the efficacy of antibiotic treatment to be assessed in live animals in real time. The NIR fluorescent imaging system disclosed here is a valuable resource for TB research and can serve to accelerate drug development.

2.
ACS Chem Biol ; 13(11): 3184-3192, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30289689

RESUMO

Benzothiazinones (BTZ) are highly potent bactericidal inhibitors of mycobacteria and the lead compound, BTZ043, and the optimized drug candidate, PBTZ169, have potential for the treatment of tuberculosis. Here, we exploited the tractability of the BTZ scaffold by attaching a range of fluorophores to the 2-substituent of the BTZ ring via short linkers. We show by means of fluorescence imaging that the most advanced derivative, JN108, is capable of efficiently labeling its target, the essential flavoenzyme DprE1, both in cell-free extracts and after purification as well as in growing cells of different actinobacterial species. DprE1 displays a polar localization in Mycobacterium tuberculosis, M. marinum, M. smegmatis, and Nocardia farcinica but not in Corynebacterium glutamicum. Finally, mutation of the cysteine residue in DprE1 in these species, to which BTZ covalently binds, abolishes completely the interaction with JN108, thereby highlighting the specificity of this fluorescent probe.


Assuntos
Marcadores de Afinidade/farmacologia , Oxirredutases do Álcool/antagonistas & inibidores , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tiazinas/farmacologia , Actinomycetales/efeitos dos fármacos , Actinomycetales/enzimologia , Marcadores de Afinidade/síntese química , Oxirredutases do Álcool/genética , Antituberculosos/síntese química , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Fluoresceínas/síntese química , Fluoresceínas/farmacologia , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência/métodos , Mutação , Tiazinas/síntese química
3.
mBio ; 9(5)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301850

RESUMO

New drugs are needed to control the current tuberculosis (TB) pandemic caused by infection with Mycobacterium tuberculosis We report here on our work with AX-35, an arylvinylpiperazine amide, and four related analogs, which are potent antitubercular agents in vitro All five compounds showed good activity against M. tuberculosisin vitro and in infected THP-1 macrophages, while displaying only mild cytotoxicity. Isolation and characterization of M. tuberculosis-resistant mutants to the arylvinylpiperazine amide derivative AX-35 revealed mutations in the qcrB gene encoding a subunit of cytochrome bc1 oxidase, one of two terminal oxidases of the electron transport chain. Cross-resistance studies, allelic exchange, transcriptomic analyses, and bioenergetic flux assays provided conclusive evidence that the cytochrome bc1-aa3 is the target of AX-35, although the compound appears to interact differently with the quinol binding pocket compared to previous QcrB inhibitors. The transcriptomic and bioenergetic profiles of M. tuberculosis treated with AX-35 were similar to those generated by other cytochrome bc1 oxidase inhibitors, including the compensatory role of the alternate terminal oxidase cytochrome bd in respiratory adaptation. In the absence of cytochrome bd oxidase, AX-35 was bactericidal against M. tuberculosis Finally, AX-35 and its analogs were active in an acute mouse model of TB infection, with two analogs displaying improved activity over the parent compound. Our findings will guide future lead optimization to produce a drug candidate for the treatment of TB and other mycobacterial diseases, including Buruli ulcer and leprosy.IMPORTANCE New drugs against Mycobacterium tuberculosis are urgently needed to deal with the current global TB pandemic. We report here on the discovery of a series of arylvinylpiperazine amides (AX-35 to AX-39) that represent a promising new family of compounds with potent in vitro and in vivo activities against M. tuberculosis AX compounds target the QcrB subunit of the cytochrome bc1 terminal oxidase with a different mode of interaction compared to those of known QcrB inhibitors. This study provides the first multifaceted validation of QcrB inhibition by recombineering-mediated allelic exchange, gene expression profiling, and bioenergetic flux studies. It also provides further evidence for the compensatory role of cytochrome bd oxidase upon QcrB inhibition. In the absence of cytochrome bd oxidase, AX compounds are bactericidal, an encouraging property for future antimycobacterial drug development.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Piperazinas/farmacologia , Tuberculose/tratamento farmacológico , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Linhagem Celular , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia
4.
ACS Infect Dis ; 3(1): 5-17, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-27726334

RESUMO

VCC234718, a molecule with growth inhibitory activity against Mycobacterium tuberculosis (Mtb), was identified by phenotypic screening of a 15344-compound library. Sequencing of a VCC234718-resistant mutant identified a Y487C substitution in the inosine monophosphate dehydrogenase, GuaB2, which was subsequently validated to be the primary molecular target of VCC234718 in Mtb. VCC234718 inhibits Mtb GuaB2 with a Ki of 100 nM and is uncompetitive with respect to IMP and NAD+. This compound binds at the NAD+ site, after IMP has bound, and makes direct interactions with IMP; therefore, the inhibitor is by definition uncompetitive. VCC234718 forms strong pi interactions with the Y487 residue side chain from the adjacent protomer in the tetramer, explaining the resistance-conferring mutation. In addition to sensitizing Mtb to VCC234718, depletion of GuaB2 was bactericidal in Mtb in vitro and in macrophages. When supplied at a high concentration (≥125 µM), guanine alleviated the toxicity of VCC234718 treatment or GuaB2 depletion via purine salvage. However, transcriptional silencing of guaB2 prevented Mtb from establishing an infection in mice, confirming that Mtb has limited access to guanine in this animal model. Together, these data provide compelling validation of GuaB2 as a new tuberculosis drug target.


Assuntos
Antituberculosos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Mycobacterium/efeitos dos fármacos , Sulfonas/farmacologia , Tuberculose/tratamento farmacológico , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Descoberta de Drogas , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genoma Bacteriano , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...