Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2402689121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954550

RESUMO

Climate warming is causing widespread deglaciation and pioneer soil formation over glacial deposits. Melting glaciers expose rocky terrain and glacial till sediment that is relatively low in biomass, oligotrophic, and depleted in nutrients. Following initial colonization by microorganisms, glacial till sediments accumulate organic carbon and nutrients over time. However, the mechanisms driving soil nutrient stabilization during early pedogenesis after glacial retreat remain unclear. Here, we traced amino acid uptake by microorganisms in recently deglaciated high-Arctic soils and show that fungi play a critical role in the initial stabilization of the assimilated carbon. Pioneer basidiomycete yeasts were among the predominant taxa responsible for carbon assimilation, which were associated with overall high amino acid use efficiency and reduced respiration. In intermediate- and late-stage soils, lichenized ascomycete fungi were prevalent, but bacteria increasingly dominated amino acid assimilation, with substantially decreased fungal:bacterial amino acid assimilation ratios and increased respiration. Together, these findings demonstrate that fungi are important drivers of pedogenesis in high-Arctic ecosystems that are currently subject to widespread deglaciation from global warming.


Assuntos
Carbono , Fungos , Camada de Gelo , Microbiologia do Solo , Solo , Regiões Árticas , Carbono/metabolismo , Solo/química , Fungos/metabolismo , Camada de Gelo/microbiologia , Aquecimento Global , Aminoácidos/metabolismo , Ecossistema
2.
Int J Astrobiol ; 22(4): 247-271, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38046673

RESUMO

Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.

3.
Sci Rep ; 12(1): 20118, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446870

RESUMO

Recent work examining nematode and tardigrade gut microbiomes has identified species-specific relationships between host and gut community composition. However, only a handful of species from either phylum have been examined. How microbiomes differ among species and what factors contribute to their assembly remains unexplored. Cyanobacterial mats within Antarctic Dry Valley streams host a simple and tractable natural ecosystem of identifiable microinvertebrates to address these questions. We sampled 2 types of coexisting mats (i.e., black and orange) across four spatially isolated streams, hand-picked single individuals of two nematode species (i.e., Eudorylaimus antarcticus and Plectus murrayi) and tardigrades, to examine their gut microbiomes using 16S and 18S rRNA metabarcoding. All gut microbiomes (bacterial and eukaryotic) were significantly less diverse than the mats they were isolated from. In contrast to mats, microinvertebrates' guts were depleted of Cyanobacteria and differentially enriched in taxa of Bacteroidetes, Proteobacteria, and Fungi. Among factors investigated, gut microbiome composition was most influenced by host identity while environmental factors (e.g., mats and streams) were less important. The importance of host identity in predicting gut microbiome composition suggests functional value to the host, similar to other organisms with strong host selected microbiomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Tardígrados , Animais , Humanos , Regiões Antárticas , Cromadoria , Microbioma Gastrointestinal/genética , Microbiota/genética , Rios
4.
Environ Microbiome ; 17(1): 34, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752802

RESUMO

BACKGROUND: Understanding the factors that influence microbes' environmental distributions is important for determining drivers of microbial community composition. These include environmental variables like temperature and pH, and higher-dimensional variables like geographic distance and host species phylogeny. In microbial ecology, "specificity" is often described in the context of symbiotic or host parasitic interactions, but specificity can be more broadly used to describe the extent to which a species occupies a narrower range of an environmental variable than expected by chance. Using a standardization we describe here, Rao's (Theor Popul Biol, 1982. https://doi.org/10.1016/0040-5809(82)90004-1, Sankhya A, 2010. https://doi.org/10.1007/s13171-010-0016-3 ) Quadratic Entropy can be conveniently applied to calculate specificity of a feature, such as a species, to many different environmental variables. RESULTS: We present our R package specificity for performing the above analyses, and apply it to four real-life microbial data sets to demonstrate its application. We found that many fungi within the leaves of native Hawaiian plants had strong specificity to rainfall and elevation, even though these variables showed minimal importance in a previous analysis of fungal beta-diversity. In Antarctic cryoconite holes, our tool revealed that many bacteria have specificity to co-occurring algal community composition. Similarly, in the human gut microbiome, many bacteria showed specificity to the composition of bile acids. Finally, our analysis of the Earth Microbiome Project data set showed that most bacteria show strong ontological specificity to sample type. Our software performed as expected on synthetic data as well. CONCLUSIONS: specificity is well-suited to analysis of microbiome data, both in synthetic test cases, and across multiple environment types and experimental designs. The analysis and software we present here can reveal patterns in microbial taxa that may not be evident from a community-level perspective. These insights can also be visualized and interactively shared among researchers using specificity's companion package, specificity.shiny.

5.
Sci Total Environ ; 807(Pt 2): 150874, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627905

RESUMO

Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied. The major purpose of our study is the presentation and description of morphological diversity, chemical and photoautotrophs composition, and organic matter content of cryoconite sampled from 33 polar and mountain glaciers around the globe. Observations revealed that cryoconite is represented by various morphologies including loose and granular forms. Granular cryoconite includes smooth, rounded, or irregularly shaped forms; with some having their surfaces covered by cyanobacteria filaments. The occurrence of granules increased with the organic matter content in cryoconite. Moreover, a major driver of cryoconite colouring was the concentration of organic matter and its interplay with minerals. The structure of cyanobacteria and algae communities in cryoconite differs between glaciers, but representatives of cyanobacteria families Pseudanabaenaceae and Phormidiaceae, and algae families Mesotaeniaceae and Ulotrichaceae were the most common. The most of detected cyanobacterial taxa are known to produce polymeric substances (EPS) that may cement granules. Organic matter content in cryoconite varied between glaciers, ranging from 1% to 38%. The geochemistry of all the investigated samples reflected local sediment sources, except of highly concentrated Pb and Hg in cryoconite collected from European glaciers near industrialized regions, corroborating cryoconite as element-specific collector and potential environmental indicator of anthropogenic activity. Our work supports a notion that cryoconite may be more than just simple sediment and instead exhibits complex structure with relevance for biodiversity and the functioning of glacial ecosystems.


Assuntos
Efeitos Antropogênicos , Camada de Gelo , Ecossistema , Humanos , Minerais
6.
Front Microbiol ; 12: 654135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177836

RESUMO

Cold, dry, and nutrient-poor, the McMurdo Dry Valleys of Antarctica are among the most extreme terrestrial environments on Earth. Numerous studies have described microbial communities of low elevation soils and streams below glaciers, while less is known about microbial communities in higher elevation soils above glaciers. We characterized microbial life in four landscape features (habitats) of a mountain in Taylor Valley. These habitats varied significantly in soil moisture and include moist soils of a (1) lateral glacial moraine, (2) gully that terminates at the moraine, and very dry soils on (3) a southeastern slope and (4) dry sites near the gully. Using rRNA gene PCR amplicon sequencing of Bacteria and Archaea (16S SSU) and eukaryotes (18S SSU), we found that all habitat types harbored significantly different bacterial and eukaryotic communities and that these differences were most apparent when comparing habitats that had macroscopically visible soil crusts (gully and moraine) to habitats with no visible crusts (near gully and slope). These differences were driven by a relative predominance of Actinobacteria and a Colpodella sp. in non-crust habitats, and by phototrophic bacteria and eukaryotes (e.g., a moss) and predators (e.g., tardigrades) in habitats with biological soil crusts (gully and moraine). The gully and moraine also had significantly higher 16S and 18S ESV richness than the other two habitat types. We further found that many of the phototrophic bacteria and eukaryotes of the gully and moraine share high sequence identity with phototrophs from moist and wet areas elsewhere in the Dry Valleys and other cold desert ecosystems. These include a Moss (Bryum sp.), several algae (e.g., a Chlorococcum sp.) and cyanobacteria (e.g., Nostoc and Phormidium spp.). Overall, the results reported here broaden the diversity of habitat types that have been studied in the Dry Valleys of Antarctica and suggest future avenues of research to more definitively understand the biogeography and factors controlling microbial diversity in this unique ecosystem.

7.
Annu Rev Virol ; 8(1): 133-158, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34033501

RESUMO

Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field.


Assuntos
Metagenômica , Vírus , Animais , Ecossistema , Genoma Viral , Humanos , Metagenoma , Plantas , Vírus/genética
8.
Microorganisms ; 8(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171740

RESUMO

The island species-area relationship (ISAR) is a positive association between the number of species and the area of an isolated, island-like habitat. ISARs are ubiquitous across domains of life, yet the processes generating ISARs remain poorly understood, particularly for microbes. Larger and more productive islands are hypothesized to have more species because they support larger populations of each species and thus reduce the probability of stochastic extinctions in small population sizes. Here, we disentangled the effects of "island" size and productivity on the ISAR of Antarctic cryoconite holes. We compared the species richness of bacteria and microbial eukaryotes on two glaciers that differ in their productivity across varying hole sizes. We found that cryoconite holes on the more productive Canada Glacier gained more species with increasing hole area than holes on the less productive Taylor Glacier. Within each glacier, neither productivity nor community evenness explained additional variation in the ISAR. Our results are, therefore, consistent with productivity shaping microbial ISARs at broad scales. More comparisons of microbial ISARs across environments with limited confounding factors, such as cryoconite holes, and experimental manipulations within these systems will further contribute to our understanding of the processes shaping microbial biogeography.

9.
Viruses ; 11(11)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689942

RESUMO

Antarctic cryoconite holes, or small melt-holes in the surfaces of glaciers, create habitable oases for isolated microbial communities with tightly linked microbial population structures. Viruses may influence the dynamics of polar microbial communities, but the viromes of the Antarctic cryoconite holes have yet to be characterized. We characterize single-stranded DNA (ssDNA) viruses from three cryoconite holes in the Taylor Valley, Antarctica, using metagenomics. Half of the assembled metagenomes cluster with those in the viral family Microviridae (n = 7), and the rest with unclassified circular replication associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses (n = 7). An additional 18 virus-like circular molecules encoding either a Rep, a capsid protein gene, or other unidentified but viral-like open reading frames were identified. The samples from which the genomes were identified show a strong gradient in microbial diversity and abundances, and the number of viral genomes detected in each sample mirror that gradient. Additionally, one of the CRESS genomes assembled here shares ~90% genome-wide pairwise identity with a virus identified from a freshwater pond on the McMurdo Ice Shelf (Antarctica). Otherwise, the similarity of these viruses to those previously identified is relatively low. Together, these patterns are consistent with the presence of a unique regional virome present in fresh water host populations of the McMurdo Dry Valley region.


Assuntos
Vírus de DNA/genética , DNA de Cadeia Simples , Camada de Gelo/virologia , Regiões Antárticas , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , DNA Circular , DNA Viral/genética , Água Doce/virologia , Genoma Viral/genética , Metagenômica , Microbiota/genética , Microviridae/classificação , Microviridae/genética , Microviridae/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
10.
Am Nat ; 193(5): E132-E148, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002576

RESUMO

Predator avoidance behavior, in which prey limit foraging activities in the presence of predation threats, affects the dynamics of many ecological communities. Despite the growing theoretical appreciation of the role predation plays in coexistence, predator avoidance behavior has yet to be incorporated into the theory in a general way. We introduce adaptive avoidance behavior to a consumer-resource model with three trophic levels to ask whether the ability of prey-the middle trophic level-to avoid predators alters their ability to coexist. We determine the characteristics of cases in which predator avoidance behavior changes prey coexistence or the order of competitive dominance. The mechanism underlying such changes is the weakening of apparent competition relative to resource competition in determining niche overlap, even with resource intake costs. Avoidance behavior thus generally promotes coexistence if prey partition resources but not predators, whereas it undermines coexistence if prey partition predators but not resources. For any given case, the changes in the average fitness difference between two species resulting from avoidance behavior interact with changes in niche overlap to determine coexistence. These results connect the substantial body of theoretical work on avoidance behavior and population dynamics with the body of theory on competitive coexistence.


Assuntos
Aprendizagem da Esquiva , Comportamento Competitivo , Cadeia Alimentar , Modelos Biológicos , Animais , Comportamento Predatório
11.
Front Microbiol ; 10: 65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778338

RESUMO

Although cryoconite holes, sediment-filled melt holes on glacier surfaces, appear small and homogenous, their microbial inhabitants may be spatially partitioned. This partitioning could be particularly important for maintaining biodiversity in holes that remain isolated for many years, such as in Antarctica. We hypothesized that cryoconite holes with greater species richness and biomass should exhibit greater partitioning between the sediments and water, promoting greater biodiversity through spatial niche partitioning. We tested this hypothesis by sampling frozen cryoconite holes along a gradient of biomass and biodiversity in the Taylor Valley, Antarctica, where ice-lidded cryoconite holes are a ubiquitous feature of glaciers. We extracted DNA and chlorophyll a from the sediments and water of these samples to describe biodiversity and quantify proxies for biomass. Contrary to our expectation, we found that cryoconite holes with greater richness and biomass showed less partitioning of phylotypes by the sediments versus the water, perhaps indicating that the probability of sediment microbes being mixed into the water is higher from richer sediments. Another explanation may be that organisms from the water were compressed by freezing down to the sediment layer, leaving primarily relic DNA of dead cells to be detected higher in the frozen water. Further evidence of this explanation is that the dominant sequences unique to water closely matched organisms that do not live in cryoconite holes or the Dry Valleys (e.g., vertebrates); so this cryptic biodiversity could represent unknown microbial animals or DNA from atmospheric deposition of dead biomass in the otherwise low-biomass water. Although we cannot rule out spatial niche partitioning occurring at finer scales or in melted cryoconite holes, we found no evidence of partitioning between the sediments and water in frozen holes. Future work should include more sampling of cryoconite holes at a finer spatial scale, and characterizing the communities of the sediments and water when cryoconite holes are melted and active.

12.
FEMS Microbiol Ecol ; 94(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228256

RESUMO

Ice-lidded cryoconite holes on glaciers in the Taylor Valley, Antarctica, provide a unique system of natural mesocosms for studying community structure and assembly. We used high-throughput DNA sequencing to characterize both microbial eukaryotic communities and bacterial communities within cryoconite holes across three glaciers to study similarities in their spatial patterns. We expected that the alpha (phylogenetic diversity) and beta (pairwise community dissimilarity) diversity patterns of eukaryotes in cryoconite holes would be related to those of bacteria, and that they would be related to the biogeochemical gradient within the Taylor Valley. We found that eukaryotic alpha and beta diversity were strongly related to those of bacteria across scales ranging from 140 m to 41 km apart. Alpha diversity of both was significantly related to position in the valley and surface area of the cryoconite hole, with pH also significantly correlated with the eukaryotic diversity. Beta diversity for both bacteria and eukaryotes was significantly related to position in the valley, with bacterial beta diversity also related to nitrate. These results are consistent with transport of sediments onto glaciers occurring primarily at local scales relative to the size of the valley, thus creating feedbacks in local chemistry and diversity.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Eucariotos/classificação , Eucariotos/isolamento & purificação , Camada de Gelo/microbiologia , Camada de Gelo/parasitologia , Regiões Antárticas , Bactérias/genética , Biodiversidade , Eucariotos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Filogenia
13.
Extremophiles ; 21(3): 573-580, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28321614

RESUMO

This is the first study of the highest elevation cyanobacteria-dominated microbial mat yet described. The desiccated mat was sampled in 2010 from an ephemeral rock pool at 5500 m above sea level in the Cordillera Vilcanota of southern Perú. After being frozen for 6 years at -20 °C in the lab, pieces of the mat were sequenced to fully characterize both the 16 and 18S microbial communities and experiments were conducted to determine if organisms in the mat could revive and become active under the extreme freeze-thaw conditions that these mats experience in the field. Sequencing revealed an unexpectedly diverse, multi-trophic microbial community with 16S OTU richness comparable to similar, seasonally desiccated mats from the Dry Valleys of Antarctica and low elevation sites in the Atacama Desert region. The bacterial community of the mat was dominated by phototrophs in the Cyanobacteria (Nostoc) and the Rhodospirillales, whereas the eukaryotic community was dominated by predators such as bdelloid rotifers (Philodinidae). Microcosm experiments showed that bdelloid rotifers in the mat were able to come out of dormancy and actively forage even under realistic field conditions (diurnal temperature fluctuations of -12 °C at night to + 27 °C during the day), and after being frozen for 6 years. Our results broaden our understanding of the diversity of life in periodically desiccated, high-elevation habitats and demonstrate that extreme freeze-thaw cycles per se are not a major factor limiting the development of at least some members of these unique microbial mat systems.


Assuntos
Biodiversidade , Cianobactérias/isolamento & purificação , Camada de Gelo/microbiologia , Rhodospirillales/isolamento & purificação , Rotíferos/isolamento & purificação , Altitude , Animais , Cianobactérias/genética , Dessecação , Ambientes Extremos , Congelamento , Peru , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Rhodospirillales/genética , Rotíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...