Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 537, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796535

RESUMO

Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources. Here we describe the AusTraits Plant Dictionary (APD), a new data source of terms that extends the trait definitions included in a recent trait database, AusTraits. The development process of the APD included three steps: review and formalisation of the scope of each trait and the accompanying trait description; addition of trait metadata; and publication in both human and machine-readable forms. Trait definitions include keywords, references, and links to related trait concepts in other databases, enabling integration of AusTraits with other sources. The APD will both improve the usability of AusTraits and foster the integration of trait data across global and regional plant trait databases.


Assuntos
Plantas , Bases de Dados Factuais , Dicionários como Assunto
2.
Plants (Basel) ; 11(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35448745

RESUMO

The Myrtaceae is a very large and diverse family containing a number of economically and ecologically valuable species. In Australia, the family contains approximately 1700 species from 70 genera and is structurally and floristically dominant in many diverse ecosystems. In addition to threats from habitat fragmentation and increasing rates of natural disasters, infection by myrtle rust caused by Austropuccinia psidii is of significant concern to Australian Myrtaceae species. Repeated infections of new growth have caused host death and suppressed host populations by preventing seed set. Although most Myrtaceae species demonstrate orthodox seed storage behavior, exceptional species such as those with desiccation sensitive seed or from myrtle rust-suppressed populations require alternate conservation strategies such as those offered by cryobiotechnology. Targeting seven key Australian genera, we reviewed the available literature for examples of cryobiotechnology utilized for conservation of Myrtaceae. While there were only limited examples of successful cryopreservation for a few genera in this family, successful cryopreservation of both shoot tips and embryonic axes suggest that cryobiotechnology provides a viable alternative for the conservation of exceptional species and a potential safe storage method for the many Myrtaceae species under threat from A. psidii.

3.
Ann Bot ; 129(7): 787-794, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35212713

RESUMO

BACKGROUND AND AIMS: Seed germination is strongly influenced by environmental temperatures. With global temperatures predicted to rise, the timing of germination for thousands of plant species could change, leading to potential decreases in fitness and ecosystem-wide impacts. The thermogradient plate (TGP) is a powerful but underutilized research tool that tests germination under a broad range of constant and alternating temperatures, giving researchers the ability to predict germination characteristics using current and future climates. Previously, limitations surrounding experimental design and data analysis methods have discouraged its use in seed biology research. METHODS: Here, we have developed a freely available R script that uses TGP data to analyse seed germination responses to temperature. We illustrate this analysis framework using three example species: Wollemia nobilis, Callitris baileyi and Alectryon subdentatus. The script generates >40 germination indices including germination rates and final germination across each cell of the TGP. These indices are then used to populate generalized additive models and predict germination under current and future monthly maximum and minimum temperatures anywhere on the globe. KEY RESULTS: In our study species, modelled data were highly correlated with observed data, allowing confident predictions of monthly germination patterns for current and future climates. Wollemia nobilis germinated across a broad range of temperatures and was relatively unaffected by predicted future temperatures. In contrast, C. baileyi and A. subdentatus showed strong seasonal temperature responses, and the timing for peak germination was predicted to shift seasonally under future temperatures. CONCLUSIONS: Our experimental workflow is a leap forward in the analysis of TGP experiments, increasing its many potential benefits, thereby improving research predictions and providing substantial information to inform management and conservation of plant species globally.


Assuntos
Mudança Climática , Germinação , Ecossistema , Germinação/fisiologia , Dormência de Plantas , Sementes/fisiologia , Temperatura
4.
New Phytol ; 221(4): 1764-1775, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30269352

RESUMO

Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology.


Assuntos
Germinação/fisiologia , Dispersão de Sementes/fisiologia , Sementes/fisiologia , Biodiversidade , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecossistema , Plântula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...