Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576279

RESUMO

Quantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications. Silica-coating is one of the most effective methods for overcoming the disadvantages of QDs, owing to silica's physicochemical stability, nontoxicity, and excellent bioavailability. This review highlights recent progress in the design, preparation, and application of silica-coated QDs and presents an overview of the major challenges and prospects of their application.


Assuntos
Pontos Quânticos/química , Dióxido de Silício/química , Animais , Materiais Biocompatíveis , Disponibilidade Biológica , Biomarcadores Tumorais , Cádmio/química , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Células Neoplásicas Circulantes , Imagem Óptica , Fenótipo , Albumina Sérica Humana/química , Propriedades de Superfície
2.
Adv Exp Med Biol ; 1309: 23-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782867

RESUMO

It is almost impossible to fabricate size-controlled nanomaterials without full understanding about nanoscience, because nanomaterials sometimes suddenly grow up and precipitated, meanwhile other nanomaterials are disappeared during fabrication process. With this reason, it is necessary to understand the principle theories about nanoscience for fabrication of "well-defined" nanoparticles. This chapter explains basic theories about nanomaterials. And based on the theory, methods for controlling the size of nanoparticles and preventing the aggregation after fabrication are described.


Assuntos
Nanopartículas , Nanoestruturas
3.
Adv Exp Med Biol ; 1309: 133-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782871

RESUMO

This review presents the main characteristics of metal nanoparticles (NPs), especially consisting of noble metal such as Au and Ag, and brief information on their synthesis methods. The physical and chemical properties of the metal NPs are described, with a particular focus on the optically variable properties (surface plasmon resonance based properties) and surface-enhanced Raman scattering of plasmonic materials. In addition, this chapter covers ways to achieve advances by utilizing their properties in the biological studies and medical fields (such as imaging, diagnostics, and therapeutics). These descriptions will help researchers new to nanomaterials for biomedical diagnosis to understand easily the related knowledge and also will help researchers involved in the biomedical field to learn about the latest research trends.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
4.
Adv Exp Med Biol ; 1309: 191-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782873

RESUMO

Magnetic nanoparticles have been used in various fields such as data storage, biomedicine, or bioimaging with their unique magnetic property. With their low toxicity, the importance of magnetic nanoparticles keeps increasing especially in biological field. In this chapter, content suitable for scientific inquirers or undergraduates to acquire basic knowledge about nanotechnology is introduced and then recent research trends in nanotechnology are covered.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Sistemas de Liberação de Medicamentos , Magnetismo , Nanopartículas/toxicidade , Nanotecnologia , Fenômenos Físicos
5.
Adv Exp Med Biol ; 1309: 289-292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782878

RESUMO

Nanotechnology is a rapidly growing area of development by numerous research groups across the world with its potential applications gaining recognition since the 1950s across various fields. During the last decade of the twentieth century, researchers have actively engaged in the synthesis of nanoparticles and investigation of their physicochemical properties. Advancing the research momentum forward at the beginning of the twenty-first century, rapid development of nanoscience allowed to demonstrate unprecedented advantages of the nanomaterials and its applications in a wide range of fields. The interdisciplinary nature of nanoscience and its expansion has led to establishment of new laboratories and research centers, with increasing needs on training and educating young scientists in advanced laboratory protocols. In addition, pedagogical demands in nanotechnology and nanomaterials have resulted an emergence of new dedicated curriculums at universities which has sped up the development of nanoscience and its contribution to the body of knowledge in natural science.


Assuntos
Nanopartículas , Nanoestruturas , Humanos , Nanotecnologia , Pesquisadores , Universidades
6.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516981

RESUMO

Histamine intoxication associated with seafood consumption represents a global health problem. The consumption of high concentrations of histamine can cause illnesses ranging from light symptoms, such as a prickling sensation, to death. In this study, gold-silver alloy-embedded silica (SiO2@Au@Ag) nanoparticles were created to detect histamine using surface-enhanced Raman scattering (SERS). The optimal histamine SERS signal was measured following incubation with 125 µg/mL of SiO2@Au@Ag for 2 h, with a material-to-histamine solution volume ratio of 1:5 and a phosphate-buffered saline-Tween 20 (PBS-T) solvent at pH 7. The SERS intensity of the histamine increased proportionally with the increase in histamine concentration in the range 0.1-0.8 mM, with a limit of detection of 3.698 ppm. Our findings demonstrate the applicability of SERS using nanomaterials for histamine detection. In addition, this study demonstrates that nanoalloys could have a broad application in the future.


Assuntos
Ligas/química , Técnicas Biossensoriais , Histamina/análise , Nanopartículas Metálicas/química , Dióxido de Silício/química , Prata/química , Análise Espectral Raman , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Sensibilidade e Especificidade , Solventes
7.
Nanomaterials (Basel) ; 10(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936217

RESUMO

In this study, silica-coated magnetic iron oxide nanoparticles (MNPs@SiO2) were covalently conjugated onto graphene oxide (GO/MNP@SiO2) for protein isolation. First, MNPs were precisely coated with a silica layer on the surface by using the reverse microemulsion method, followed by incubation with 3-glycidyloxypropyltrimethoxysilane (GPTS) to produce the GPTS-functionalized MNPs@SiO2 (GPTS-coated MNPs@SiO2) that display epoxy groups on the surface. The silica shell on the MNPs was optimized at 300 µL of Igepal®CO-520, 5 mg of MNP, 100 µL of TEOS, 100 µL of NH4OH and 3% of 3-glycidyloxypropyltrimethoxysilane (GPTS). Simultaneously, polyethyleneimine (PEI) was covalently conjugated to GO to enhance the stability of GO in aqueous solutions and create the reaction sites with epoxy groups on the surface of GPTS-coated MNP@SiO2. The ratio of PEI grafted GO and GPTS-coated MNP@SiO2 (GO/MNP ratio) was investigated to produce GO/MNPs@SiO2 with highly saturated magnetization without aggregation. As a result, the GO/MNP ratio of 5 was the best condition to produce the GO/MNP@SiO2 with 9.53 emu/g of saturation superparamagnetization at a magnetic field of 2.0 (T). Finally, the GO/MNPs@SiO2 were used to separate bovine serum albumin (BSA) to investigate its protein isolation ability. The quantity of BSA adsorbed onto 1 mg of GO/MNP@SiO2 increased sharply over time to reach 628 ± 9.3 µg/mg after 15 min, which was 3.5-fold-higher than that of GPTS-coated MNP@SiO2. This result suggests that the GO/MNP@SiO2 nanostructure can be used for protein isolation.

8.
Int J Mol Sci ; 20(19)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569479

RESUMO

In this study, SiO2@Au@4-MBA@Ag (4-mercaptobenzoic acid labeled gold-silver-alloy-embedded silica nanoparticles) nanomaterials were investigated for the detection of thiram, a pesticide. First, the presence of Au@4-MBA@Ag alloys on the surface of SiO2 was confirmed by the broad bands of ultraviolet-visible spectra in the range of 320-800 nm. The effect of the 4-MBA (4-mercaptobenzoic acid) concentration on the Ag shell deposition and its intrinsic SERS (surface-enhanced Raman scattering) signal was also studied. Ag shells were well coated on SiO2@Au@4-MBA in the range of 1-1000 µM. The SERS intensity of thiram-incubated SiO2@Au@4-MBA@Ag achieved the highest value by incubation with 500 µL thiram for 30 min, and SERS was measured at 200 µg/mL SiO2@Au@4-MBA@Ag. Finally, the SERS intensity of thiram at 560 cm-1 increased proportionally with the increase in thiram concentration in the range of 240-2400 ppb, with a limit of detection (LOD) of 72 ppb.


Assuntos
Benzoatos/química , Benzoatos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Prata/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Tiram/análise , Análise Espectral
9.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871136

RESUMO

Signal reproducibility in surface-enhanced Raman scattering (SERS) remains a challenge, limiting the scope of the quantitative applications of SERS. This drawback in quantitative SERS sensing can be overcome by incorporating internal standard chemicals between the core and shell structures of metal nanoparticles (NPs). Herein, we prepared a SERS-active core Raman labeling compound (RLC) shell material, based on Au⁻Ag NPs and assembled silica NPs (SiO2@Au@RLC@Ag NPs). Three types of RLCs were used as candidates for internal standards, including 4-mercaptobenzoic acid (4-MBA), 4-aminothiophenol (4-ATP) and 4-methylbenzenethiol (4-MBT), and their effects on the deposition of a silver shell were investigated. The formation of the Ag shell was strongly dependent on the concentration of the silver ion. The negative charge of SiO2@Au@RLCs facilitated the formation of an Ag shell. In various pH solutions, the size of the Ag NPs was larger at a low pH and smaller at a higher pH, due to a decrease in the reduction rate. The results provide a deeper understanding of features in silver deposition, to guide further research and development of a strong and reliable SERS probe based on SiO2@Au@RLC@Ag NPs.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Prata/química , Compostos de Anilina/química , Benzoatos/química , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...