Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 19(1): 43-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37794688

RESUMO

INTRODUCTION: Network representation can give a holistic view of relationships for biomedical entities through network topology. Link prediction estimates the probability of link formation between the pair of unconnected nodes. In the drug discovery process, the link prediction method not only enables the detection of connectivity patterns but also predicts the effects of one biomedical entity to multiple entities simultaneously and vice versa, which is useful for many applications. AREAS COVERED: The authors provide a comprehensive overview of network link prediction in drug discovery. Link prediction methodologies such as similarity-based approaches, embedding-based approaches, probabilistic model-based approaches, and preprocessing methods are summarized with examples. In addition to describing their properties and limitations, the authors discuss the applications of link prediction in drug discovery based on the relationship between biomedical concepts. EXPERT OPINION: Link prediction is a powerful method to infer the existence of novel relationships in drug discovery. However, link prediction has been hampered by the sparsity of data and the lack of negative links in biomedical networks. With preprocessing to balance positive and negative samples and the collection of more data, the authors believe it is possible to develop more reliable link prediction methods that can become invaluable tools for successful drug discovery.


Assuntos
Descoberta de Drogas , Modelos Estatísticos , Humanos , Descoberta de Drogas/métodos
2.
Bioact Mater ; 13: 135-148, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35224297

RESUMO

In the last few decades, adverse reactions to pharmaceuticals have been evaluated using 2D in vitro models and animal models. However, with increasing computational power, and as the key drivers of cellular behavior have been identified, in silico models have emerged. These models are time-efficient and cost-effective, but the prediction of adverse reactions to unknown drugs using these models requires relevant experimental input. Accordingly, the physiome concept has emerged to bridge experimental datasets with in silico models. The brain physiome describes the systemic interactions of its components, which are organized into a multilevel hierarchy. Because of the limitations in obtaining experimental data corresponding to each physiome component from 2D in vitro models and animal models, 3D in vitro brain models, including brain organoids and brain-on-a-chip, have been developed. In this review, we present the concept of the brain physiome and its hierarchical organization, including cell- and tissue-level organizations. We also summarize recently developed 3D in vitro brain models and link them with the elements of the brain physiome as a guideline for dataset collection. The connection between in vitro 3D brain models and in silico modeling will lead to the establishment of cost-effective and time-efficient in silico models for the prediction of the safety of unknown drugs.

3.
PLoS One ; 16(4): e0249404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831016

RESUMO

Prediction of protein-ligand interactions is a critical step during the initial phase of drug discovery. We propose a novel deep-learning-based prediction model based on a graph convolutional neural network, named GraphBAR, for protein-ligand binding affinity. Graph convolutional neural networks reduce the computational time and resources that are normally required by the traditional convolutional neural network models. In this technique, the structure of a protein-ligand complex is represented as a graph of multiple adjacency matrices whose entries are affected by distances, and a feature matrix that describes the molecular properties of the atoms. We evaluated the predictive power of GraphBAR for protein-ligand binding affinities by using PDBbind datasets and proved the efficiency of the graph convolution. Given the computational efficiency of graph convolutional neural networks, we also performed data augmentation to improve the model performance. We found that data augmentation with docking simulation data could improve the prediction accuracy although the improvement seems not to be significant. The high prediction performance and speed of GraphBAR suggest that such networks can serve as valuable tools in drug discovery.


Assuntos
Gráficos por Computador , Redes Neurais de Computação , Proteínas/metabolismo , Ligantes , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...