Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(20): 26849-26861, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38597322

RESUMO

The study explores the synthesis and versatile properties of amphiphilic magnetic particles (AMPs) achieved through sequential coatings. Modulating the hydrophobic content in the synthesis process allows for the formation of hydrophilic, amphiphilic, and hydrophobic magnetic particles, with stable AMPs synthesis achieved at a ratio of hydrophilic to hydrophobic portions of approximately 71 to 29%. These AMPs exhibited outstanding dispersion in both oil and water within an oil/water mixture. Polyethylenimine in the AMP primarily enhances the removal of hydrophilic microparticles and facilitates dispersion in water. On the other hand, octadecylamine is specifically designed for the effective elimination of hydrophobic microparticles and their dispersion in oil. AMPs demonstrated effective removal capabilities for both hydrophilic and hydrophobic microparticles in water as well as hydrophobic microparticles in 100% oil. Our approach is also suited for eliminating hydrophobic microparticles dispersed in small quantities of oil floating on large bodies of water in real-world situations.

2.
ACS Omega ; 8(43): 40741-40753, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929114

RESUMO

Oily wastewater, a global environmental concern, demands efficient oil/water separation and pollutant removal. Our compressible separator and catalyst (CSC) balls, prepared through sponge etching and metal nanoparticle synthesis, exhibited efficient degradation of dyes of varying sizes, spanning a molecular weight range from 139 to 696 g/mol during the oil/water separation. Control over the distance between catalysts was achieved by incorporating Ag-Pt-Pd catalysts into the sponge skeleton and by adjusting the compression rates. The dispersion of the catalysts improved degradation efficiency for larger dyes, while concentrating the catalysts proved to be more effective for the smaller ones. By optimizing the compression rates of CSC balls, we successfully achieved the effective removal of emulsions of different sizes and precise control of flux. Our CSC ball-loaded system offers efficient and versatile solutions for concurrent separation and purification of emulsions and pollutants with potential environmental benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA