Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 204: 116524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843705

RESUMO

We investigated the recent spatial variation in the mesozooplankton community on the broad shelf of the RSR MPA during the bloom season. The mesozooplankton community was geographically divided into three regions: the Terra Nova Bay polynya, the Ross Sea polynya, and the marginal polynya. Larval euphausiids were dominant in the two polynya regions, whereas copepods were predominant in the marginal polynya region. Salinity, sea ice, and dissolved oxygen related to the different water mass compositions were the most significant factors distinguishing the mesozooplankton community. The key environmental variable separating the three groups was salinity. In accordance with the relatively high mesozooplankton abundance in the polynya regions, the occurrence and size of the polynyas in the December Ross Sea are thought to affect the spatial distribution of mesozooplankton. Consequently, this study indicates that two polynyas in the Ross Sea are vital habitats for krill during summer. Our observation results provide fundamental information for evaluating marine ecosystems and establishing a management plan for the RSR MPA.


Assuntos
Copépodes , Ecossistema , Estações do Ano , Zooplâncton , Animais , Salinidade , Monitoramento Ambiental , Euphausiacea , Conservação dos Recursos Naturais
2.
Mitochondrial DNA B Resour ; 9(4): 500-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623177

RESUMO

The mitogenome of Euphausia crystallorophias collected from the Ross Sea Region Marine Protected Area (RSR MPA) is described for the first time. The assembled mitogenome was 17,291 bp in length and consisted of two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and noncoding regions, all of which were identical to those of other euphausiid species. The most common start codon for the 13 PCGs was ATG, and the most common termination codon was TAA. The overall G + C content was 33.2% in the heavy strand. Euphausia crystallorophias was sister to E. superba in the phylogenetic analysis. The mitogenome of E. crystallorophias provided significant DNA molecular data for further identification and phylogenetic analysis within the euphausiids.

3.
Sci Total Environ ; 891: 164666, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286011

RESUMO

The compositions of organic carbon could be important in determining biological carbon pump efficiency. However, little information on them in relation to each algal assemblage is currently available in the Ross Sea. Here, we investigated the seasonal variations in organic carbon composition and the relative abundance of each organic carbon, including particulate organic carbon (POC), dissolved organic carbon (DOC), and transparent exopolymer particles (TEPs), characterized by different algal groups in the Ross Sea. The average POC and DOC contributions to the total organic carbon (TOC = POC + DOC) were 13.8 ± 3.7 % and 86.2 ± 3.7 % in mid-January 2019 and 20.9 ± 4.1 % and 79.1 ± 4.1 % in February-March 2018, respectively. The carbon content of TEP (TEP-C) contributed 19.6 ± 11.7 % and 4.6 ± 7.0 % of POC and TOC in mid-January and 36.2 ± 14.8 % and 9.0 ± 6.7 % in February-March, respectively. We found that the organic carbon compositions were affected by seasonal variations in the phytoplankton bloom phase, physical characteristics, and phytoplankton community structure. DOC concentrations and contributions to the TOC increased as phytoplankton cells became senescent in mid-January and decreased in February-March when phytoplankton were relatively active. From February-March, the deepened mixed layer depth encouraged TEP formation, subsequently increasing the TEP contributions. Regardless of the sampling season, all organic carbon concentrations per unit Chl-a were significantly higher in P. antarctica-abundant groups. The DOC contributions to the TOC were correspondingly higher at the P. antarctica-abundant stations in mid-January, which indicates that P. antarctica could be also important in the DOC contributions in the Ross Sea. The rapid alteration in environmental characteristics and phytoplankton community structures in the Ross Sea due to climate change could affect the organic carbon pool at the euphotic layer which consequently could determine the efficiency of the biological pump.


Assuntos
Carbono , Monitoramento Ambiental , Fitoplâncton , Matéria Orgânica Dissolvida , Análise Espaço-Temporal
4.
Genes (Basel) ; 13(5)2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35627306

RESUMO

Meso- and macrozooplankton play crucial roles in the trophic web and the biological carbon pump in the ocean by transferring energy from lower to higher trophic levels and vertically exporting carbon from the surface to the deep ocean and seabed. In this study, zooplankton community structures in the Ross Sea, Antarctica, were analyzed using metabarcoding methods. Both regular barcode (RB) (using a PacBio Sequel system) and mini barcode (MB) (using the Illumina MiSeq platform) methods were utilized. As the result of a combination of the two bioinformatic pipelines used in the RB, 55 reliable haplotypes were obtained from the pooled zooplankton net samples, whereas 183 amplicon sequence variants (ASVs) were isolated from the MB metabarcoding analyses of 14 individual stations. Among these, 39 (70.9%) and 125 (90.6%) showed higher than 99% sequence identity to the database, indicating that there were sufficient reference sequences to employ metabarcoding analysis-except for several taxa, including small-sized copepods, cnidarians, and pneumodermatids. A high degree of shared taxa showed that both metabarcoding analyses were feasible for use in the analysis of zooplankton assemblages in the Ross Sea. However, RB would be more useful for the construction of a reference database due to its relatively high cost, whereas MB would be more economic for ecological surveys due to its relatively low cost (albeit, only if reference sequences were well documented using RB). Zooplankton assemblages were highly diverse in each sample site, presumably due to the narrow covered volumes of the vertical net-towed samples from polynyas in the Ross Sea. As metabarcoding data accumulate, we will gain better insights into zooplankton communities and their ecological implications in the Ross Sea.


Assuntos
Copépodes , Código de Barras de DNA Taxonômico , Animais , Carbono , Galinhas , Código de Barras de DNA Taxonômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Zooplâncton/genética
5.
Animals (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34573647

RESUMO

To identify the dietary composition and characteristics of both Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) penguins at four breeding sites, we performed stable carbon (δ13C) and nitrogen (δ15N) isotope analysis of down samples taken from penguin chicks. Adélie Penguin chicks at Cape Hallett mostly fed on Antarctic krill (Euphausia superba; 65.5 ± 3.5%), a reflection of the prevalence of that species near Cape Hallett, and no significant differences were noted between 2017 and 2018. However, Adélie Penguin chicks at Inexpressible Island, located near Terra Nova Bay, fed on both Antarctic silverfish (Pleuragramma antarctica; 42.5%) and ice krill (Euphausia crystallorophias; 47%), reflecting the high biomass observed in Terra Nova Bay. Meanwhile, no significant difference was noted between the two breeding sites of the Emperor Penguin. Emperor Penguin chicks predominantly fed on Antarctic silverfish (74.5 ± 2.1%) at both breeding sites (Cape Washington and Coulman Island), suggesting that diet preference represents the main factor influencing Emperor Penguin foraging. In contrast, the diet of the Adélie Penguin reflects presumed regional differences in prey prevalence, as inferred from available survey data.

6.
Front Microbiol ; 12: 623600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552041

RESUMO

Marine particulate organic matter (POM) largely derived from phytoplankton is a primary food source for upper trophic consumers. Their biochemical compositions are important for heterotrophs. Especially, essential amino acids (EAAs) in phytoplankton are well known to have impacts on the survival and egg productions of herbivorous zooplankton. To estimate the nutritional quality of POM, the biochemical compositions [biomolecular and amino acid (AA) compositions] of POM were investigated in the northwestern Ross Sea during the late austral summer in 2018. Carbohydrates (CHO) accounted for the highest portion among different biomolecules [CHO, proteins (PRT), and lipids (LIP)] of POM. However, the higher contribution of PRT and lower contribution of CHO were observed in the southern section of our study area compared to those in the northern section. The spatial distribution of total hydrolyzable AAs in POM was considerably influenced by phytoplankton biomass, which indicates that the main source of particulate AA was generated by phytoplankton. Our results showed that the relative contribution of EAA to the total AAs was strongly associated with EAA index (EAAI) for determining protein quality. This result indicates that higher EAA contribution in POM suggests a better protein quality in consistency with high EAAI values. In this study, variations in the biochemical compositions in POM were principally determined by two different bloom-forming taxa (diatoms and Phaeocystis antarctica). The southern region dominated majorly by diatoms was positively correlated with PRT, EAA, and EAAI indicating a good protein quality, while P. antarctica-abundant northern region with higher CHO contribution was negatively correlated with good protein quality factors. Climate-driven environmental changes could alter not only the phytoplankton community but also the physiological conditions of phytoplankton. Our findings could provide a better understanding for future climate-induced changes in the biochemical compositions of phytoplankton and consequently their potential impacts on higher trophic levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...