Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899305

RESUMO

Anionic waterborne polyurethane (aWPU) is not compatible with graphene oxide (GO) due to the repulsive force acting on identical ionic charges. In this study, we fabricated cationic surfactant treated GO and cationic surfactant treated carbon nanotube (CNT) to increase the compatibility with aWPU. Cationic waterborne polyurethane (WPU) and nanocomposites thereof were also prepared. On the basis of the mechanical properties of the nanocomposites, glass transition temperature (Tg), and a stability test, it was found that the compatibility between WPU and a nanofiller (NF) was enhanced to a great extent when WPU and NF had opposite ionicity. The Tg and mechanical properties of WPU increased with the addition of NF, showed the maximum value and thereafter decreased with further addition. The effect of composition of ionic monomer in WPU was also investigated. As the composition of the ionic monomer increases, the concentration of NF for the maximum Tg and mechanical properties increases. This was attributed to the ionic association between the NF and WPU.

2.
J Nanosci Nanotechnol ; 18(2): 943-950, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448518

RESUMO

Since the discovery of carbon nanotubes (CNT), significant research works have focused on the application of CNT as conductive filler to polymer nanocomposites which can be used in several fields such as electrostatic dissipation (ESD), electrostatic painting and electromagnetic interference shielding (EMI-shielding). However, the main challenge in the large-scale manufacturing of this technology is the poor electrical conductivity of polymer nanocomposites produced by injection molding process. This study aims to investigate the effect of CNT aspect ratio in improving the electrical conductivity of injection molded nanocomposites. In this work, three types of multiwall carbon nanotubes with different lengths were melt-mixed with polycarbonate in a twin screw extruder followed by injection and compression molding. Results show that nanocomposites with higher CNT aspect ratio exhibit higher electrical conductivity. Longer nanotubes form a stronger conductive network during secondary agglomeration which can withstand the high shear forces during injection molding. Higher melt viscosity and storage modulus were observed in nanocomposites with higher CNT aspect ratio which is attributed to the effective constriction of polymer chains by longer nanotubes. It was also found that Tg of the composites increased with nanotube aspect ratio and the addition of CNT causes degradation which leads to the general Tg depression of polycarbonate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...