Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398072

RESUMO

In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.

2.
Bioinformation ; 18(10): 974-981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37654845

RESUMO

Tyrosine kinase receptors promote the growth and differentiation of normal breast and malignant human breast cancer cells, known as ERBB receptors. Various ERBB receptors are EGFR/ErbB1 and ErbB2/neu, which get over expressed in different solid tumors that activate upon binding of ligand to the extra cellular domain of these receptors. Of note, the epidermal growth factor receptor (EGFR) is a prime contributor to cancer through the involvement of four receptor tyrosine kinases (RTKs), namely, HER1, HER2, HER3, and HER4. Among them, HER2 and HER4 are majorly associated with breast cancer. Non-peptide quinazoline compounds homologous of the adenosine triphosphate (ATP) are competitively inhibited to RTKs to prevent cancer growth and metastasis. Various small drug molecule that targets the RTKs having the same scaffold, includes Lapatinib, Tivozanib, Erlotinib, Gefitinib, Crizotinib, and Ceritinib. The present study aims to investigate the comparative potential of structurally similar TKIs against HER2 and HER4 receptor receptors-silico molecular docking using FlexX software (LeadIT 2.3.2). Each docked complex's interaction profile was performed using BIOVIA Discovery Studio Visualizer 4.0. Molecular docking analysis was performed in order to get deeper insights into the interaction and binding pattern of the ligands with HER2 and HER4 receptors. The docking results revealed the Lapatinib compound acquired the relatively highest binding score of -32.36 kcal/mol and -35.76 kcal/mol with HER2 and HER4 proteins, respectively, concerning other compounds. Lapatinib is identified as a potential inhibitor for both the RTKs. Our study thus suggests the probable direction that could be further explored in inhibiting EGFR protein harboring breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...