Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(13): 2606-2635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806659

RESUMO

Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Neuroglia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglia/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Mutação , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia
2.
Biophys J ; 119(9): 1821-1832, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33080224

RESUMO

Binding of ligands is often crucial for function yet the effects of ligand binding on the mechanical stability and energy landscape of proteins are incompletely understood. Here, we use a combination of single-molecule optical tweezers and MD simulations to investigate the effect of ligand binding on the energy landscape of acyl-coenzyme A (CoA)-binding protein (ACBP). ACBP is a topologically simple and highly conserved four-α-helix bundle protein that acts as an intracellular transporter and buffer for fatty-acyl-CoA and is active in membrane assembly. We have previously described the behavior of ACBP under tension, revealing a highly extended transition state (TS) located almost halfway between the unfolded and native states. Here, we performed force-ramp and force-jump experiments, in combination with advanced statistical analysis, to show that octanoyl-CoA binding increases the activation free energy for the unfolding reaction of ACBP without affecting the position of the transition state along the reaction coordinate. It follows that ligand binding enhances the mechanical resistance and thermodynamic stability of the protein, without changing its mechanical compliance. Steered molecular dynamics simulations allowed us to rationalize the results in terms of key interactions that octanoyl-CoA establishes with the four α-helices of ACBP and showed that the unfolding pathway is marginally affected by the ligand. The results show that ligand-induced mechanical stabilization effects can be complex and may prove useful for the rational design of stabilizing ligands.


Assuntos
Inibidor da Ligação a Diazepam , Proteínas , Inibidor da Ligação a Diazepam/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica
3.
Curr Biol ; 30(6): 1160-1166.e5, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32142698

RESUMO

Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors "line up" in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other's way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cinesinas/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Protozoários/genética , Proteínas de Algas , Transporte Biológico , Chlamydomonas reinhardtii/genética , Flagelos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo
4.
Adv Protein Chem Struct Biol ; 92: 93-133, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23954100

RESUMO

Advances in single-molecule manipulation techniques have recently enabled researchers to study a growing array of biological processes in unprecedented detail. Individual molecules can now be manipulated with subnanometer precision along a simple and well-defined reaction coordinate, the molecular end-to-end distance, and their conformational changes can be monitored in real time with ever-improving time resolution. The behavior of biomolecules under tension continues to unravel at an accelerated pace and often in combination with computational studies that reveal the atomistic details of the process under investigation. In this chapter, we explain the basic principles of force spectroscopy techniques, with a focus on optical tweezers, and describe some of the theoretical models used to analyze and interpret single-molecule manipulation data. We then highlight some recent and exciting results that have emerged from this research field on protein folding and protein-ligand interactions.


Assuntos
Microscopia de Força Atômica , Proteínas , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Pinças Ópticas , Dobramento de Proteína , Proteínas/química
5.
Cell Biol Int ; 37(5): 495-506, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404577

RESUMO

Cadmium targets the vascular endothelium causing endothelial dysfunction and leakiness of endothelial barrier. Nitric oxide plays a major role in mediating endothelial functions including angiogenesis, migration and permeability. The present study investigates the nitric oxide effects on cadmium induced endothelial leakiness. Results of ex vivo and in vitro permeability assays showed that even a sub-lethal dose of cadmium chloride (1 µM) was sufficient to induce leakiness of endothelial cells. Cadmium drastically altered the actin polymerisation pattern and membrane tension of these cells compared to controls. Addition of nitric oxide donor Spermine NONOate (SP) significantly blunted cadmium-mediated effects and recover endothelial cells integrity. Cadmium-induced cytoskeletal rearrangements and membrane leakiness are associated with the low nitric oxide availability and high reactive oxygen species generation. In brief, we show the protective role of nitric oxide against cadmium-mediated endothelial leakiness.


Assuntos
Cádmio/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Espermina/análogos & derivados , Actinas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...