Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Drug Resist ; 13: 1133-1145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368104

RESUMO

INTRODUCTION: Species of genus Candida are part of the common microbiota of humans; however, some of the Candida species are known opportunistic pathogens. Formation of biofilms, resistance to antifungal drugs, and increase in asymptomatic infections demands more studies on isolation, identification and characterization of Candida from clinical samples. METHODS: The present manuscript deals with assessment of authentic yeast identification by three methods viz., DNA sequencing of 28S rRNA gene, protein profiles using MALDI-TOF MS, and colony coloration on chromogenic media. Antifungal susceptibility and in vitro cell invasion assays were performed to further characterize these isolates. RESULTS: Comparison of three methods showed that DNA sequence analysis correctly identified more than 99.4% of the isolates up to species level as compared to 89% by MALDI-TOF MS. In this study, we isolated a total of 176 yeasts from clinical samples and preliminary morphological characters indicated that these yeast isolates belong to the genus Candida. The species distribution of isolates was as follows: 75 isolates of Candida albicans (42.61%), 50 of C. tropicalis (28.40%), 22 of C. glabrata (12.5%), 14 of C. parapsilosis (7.95%) and 4 of Clavispora lusitaniae (2.27%). Other species like Cyberlindnera fabianii, Issatchenkia orientalis, Kluyveromyces marxianus, Kodamaea ohmeri, Lodderomyces sp., and Trichosporon asahii were less than 2%. Antifungal susceptibility assay performed with 157 isolates showed that most of the isolates were resistant to the four azoles viz., clotrimazole, fluconazole, itraconazole, and ketoconazole, and the frequency of resistance was more in non-albicans Candida isolates. The susceptibility to azole drugs ranged from 7% to 48%, while 75% of the tested yeasts were susceptible to nystatin. Moreover, 88 isolates were also tested for their capacity to invade human cells using HeLa cells. In vitro invasion assay showed that most of the C. albicans isolates showed epithelial cell invasion as compared to isolates belonging to C. glabrata, C. parapsilosis and C. tropicalis. DISCUSSION: The identification of yeasts of clinical origin by sequencing of 28S rRNA gene performed better than MALDI-TOF MS. The present study reiterates the world scenario wherein there is a shift from Candida strains to emerging opportunistic pathogens which were earlier regarded as environmental strains. The present study enlightens the current understanding of identification methods for clinical yeast isolates, increased antifungal drug resistance, epithelial cell invasion as a virulence factor, and diversity of yeasts in Indian clinical samples.

2.
Front Microbiol ; 7: 1847, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920761

RESUMO

Soda lake is hyper alkaline and saline habitat located in closed craters with high evaporation rate. In current study fungal diversity from water and sediment samples of a soda lake (Lonar lake) located in Buldhana district of Maharashtra, India was investigated using extensive culturomics approach and mimicking the natural conditions of Lonar lake in culture media. A total of 104 diverse isolates of extremophilic fungi were recovered from this study and phylogenetically characterized by internal transcribed spacer (ITS) region sequencing. In addition, due to important role of phenol oxidase, and peroxidase in degradation of toxic phenol, lignin, etc., all isolated pure cultures were also screened for extracellular phenol oxidase and peroxidase production potential. Diversity analysis indicated that different groups of extremophilic fungi are present in the water and sediment samples of Lonar lake. A total of 38 species of fungi belonging to 18-different genera were recovered. Out of 104 isolates 32 showed ≤97% sequences similarity, which were morphologically different and could be potential novel isolates of extremophilic fungi. However, out of 104 isolates only 14 showed the extracellular phenol oxidase production potentials at alkaline pH. Curvularia sp. strain MEF018 showed highest phenol oxidase production at alkaline condition and had low sequence similarity with previously characterized species (96% with Curvularia pseudorobusta). Taxonomic characterization (morphological and physiological) and multi locus sequence analysis (MLSA) using combined alignment of ITS-LSU-gpd of strain MEF018 showed that it is a novel species of the genus Curvularia and hence proposed as Curvularia lonarensis sp. nov.

3.
Bioinformation ; 9(4): 174-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519100

RESUMO

UNLABELLED: : The emergence of multidrug resistant tuberculosis (MDRTB) highlights the urgent need to understand the mechanisms of resistance to the drugs and to develop a new arena of therapeutics to treat the disease. Ethambutol, isonazid, pyrazinamide, rifampicin are first line of drugs against TB, whereas aminoglycoside, polypeptides, fluoroquinolone, ethionamide are important second line of bactericidal drugs used to treat MDRTB, and resistance to one or both of these drugs are defining characteristic of extensively drug resistant TB. We retrieved 1,221 resistant genes from Antibiotic Resistance Gene Database (ARDB), which are responsible for resistance against first and second line antibiotics used in treatment of Mycobacterium tuberculosis infection. From network analysis of these resistance genes, 53 genes were found to be common. Phylogenetic analysis shows that more than 60% of these genes code for acetyltransferase. Acetyltransferases detoxify antibiotics by acetylation, this mechanism plays central role in antibiotic resistance. Seven acetyltransferase (AT-1 to AT-7) were selected from phylogenetic analysis. Structural alignment shows that these acetyltransferases share common ancestral core, which can be used as a template for structure based drug designing. From STRING analysis it is found that acetyltransferase interact with 10 different proteins and it shows that, all these interaction were specific to M. tuberculosis. These results have important implications in designing new therapeutic strategies with acetyltransferase as lead co-target to combat against MDR as well as Extreme drug resistant (XDR) tuberculosis. ABBREVIATIONS: AA - amino acid, AT - Acetyltransferase, AAC - Aminoglycoside 2'-N-acetyltransferase, XDR - Extreme drug-resistant, MDR - Multidrug-resistant, Mtb - Mycobacterium tuberculosis, TB - Tuberculosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...