Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(47): 6055-6058, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780035

RESUMO

Herein, we present a CuI-dimer, [CuI{Ph2PC6H4C(O)NC6H4PPh2-o}]2, which catalyzed direct C(sp3)-H homocoupling of benzyl and cycloalkane derivatives with excellent yields and regio-selectivity. The method is very simple and tolerates various functionalities. Synergistic metal-ligand cooperativity was observed in Cu-N bond cleavage and protonation of nitrogen, and facilitates a bifunctional pathway, minimising the free energy corrugation for catalytic intermediates.

2.
Org Lett ; 26(22): 4589-4593, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38804572

RESUMO

Herein, we describe an acid-base-free, sustainable, and efficient method for direct amidation of unactivated alkanes and toluene derivatives, using the dimeric CuI complex [CuI{o-Ph2PC6H4CONC6H4PPh2-o}2] (here onward referred to as [PNP-Cu]2). Using this method, C(sp3)-N bond formation was achieved through the activation of very challenging C(sp3)-H bonds in cycloalkanes, alkenes, allyl groups, and benzyl groups, with tolerance toward ketonic groups, heterocycles, and halide functionalities. One of the precatalysts, (PNHP-Cu-Npht) was isolated and structurally characterized. Isomerization in allyl-functionalized alkanes and selective benzylic alkylation in ketones were observed. This is a novel method for C(sp3)-N bond formation via direct N-alkylation of phthalimide, sulfonamide, benzamide, and phosphamidate.

3.
Inorg Chem ; 62(49): 19856-19870, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38031668

RESUMO

The reactions of amide functionalized bisphosphine, o-Ph2PC6H4C-(O)N(H)C6H4PPh2-o (1) (BalaHariPhos), with copper salts is described. Treatment of 1 with CuX in a 1:1 molar ratio yielded chelate complexes of the type [CuX{(o-Ph2PC6H4C(O)N(H)C6H4PPh2-o)}-κ2-P,P] (X = Cl, 2; Br, 3; and I, 4), which on subsequent treatment with KOtBu resulted in a dimeric complex [Cu(o-Ph2PC6H4C(O)(N)C6H4PPh2-o)]2 (5). Interestingly, complexes 2-4 showed weak N-H···Cu interactions. These weak H-bonding interactions are studied in detail both experimentally and computationally. Also, CuI complexes 2-5 were employed in the oxidative dehydrogenative carboxylation (ODC) of unactivated cycloalkanes in the presence of carboxylic acids to form the corresponding allylic esters. Among complexes 2-5, halide-free dimeric CuI complex 5 showed excellent metal-ligand cooperativity in the oxidative dehydrogenative carboxylation (ODC) in the presence of carboxylic acids to form the corresponding allylic esters through C(sp3)-H bond activation of unactivated cycloalkanes. Mechanistic details of the catalytic process were established by isolating the precatalyst [Cu{(o-Ph2PC6H4C(O)(NH)C6H4PPh2-o)-κ2-P,P}(OOCPh)] (6) and fully characterized by mass spectrometry, NMR data, and single-crystal X-ray analysis. Density functional theory-based calculations further provided a quantitative understanding of the energetics of a series of H atom transfer steps occurring in the catalytic cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...