Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38251124

RESUMO

A detailed inverse photoemission study unveils the unoccupied electronic structure induced by the adsorption of CuPc and CoPc phthalocyanines on Au(110) reconstructed channels. The different behavior in the two systems is related to the different intermixing of orbitals with the underlying gold states. Broadening of the density of states at the Fermi level is detected after CoPc adsorption, absent in the case CuPc. A detailed comparison with the element-selective X-ray absorption spectroscopy enlightens and complements the IPES results and confirms a surface-driven intermixing of the CoPc orbitals involved in the interaction, with the out-of-plane Co 3dz2 orbital strongly hybridized with the gold electronic states. Moreover, the contribution of the 3d empty states to the IPES data is reported for FePc, CoPc, and CuPc thin films.

2.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234601

RESUMO

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.

3.
Nanotechnology ; 32(10): 105703, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33331298

RESUMO

The relation between morphology and energy level alignment in carbon nanotubes (CNT) is a crucial information for the optimization of applications in nanoelectronics, optics, mechanics and (bio)chemistry. Here we present a study of the relation between the electronic properties and the morphology of single wall CNT (SWCNT), aligned multi wall CNT (MWCNT) and unaligned MWCNT. The CNT were synthesized via catalytic chemical vapor deposition in ultra-high vacuum conditions. Combined ultraviolet photoemission and inverse photoemission (IPES) spectra reveal a high sensitivity to the nanotube morphology. In the case of unaligned SWCNT the distinctive unoccupied Van Hove singularities (vHs) features are observed in the high resolution IPES spectra. Those features are assigned to semiconducting and metallic SWCNT states, according to calculated vHs DOS. The two MWCNT samples are similar in the diameter of the tube (about 15 nm) and present similar filled and empty electronic states, although the measured features in the aligned MWCNT are more defined. Noteworthy, interlayer states are also revealed. Their intensities are directly related to the MWCNT alignment. Focussing and geometrical effects associated to the MWCNT alignment are discussed to account the spectral differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...