Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 47(7): 100086, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909984

RESUMO

Genetic engineering technologies are essential not only for basic science but also for generating animal models for therapeutic applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system, derived from adapted prokaryotic immune responses, has led to unprecedented advancements in the field of genome editing because of its ability to precisely target and edit genes in a guide RNA-dependent manner. The discovery of various types of CRISPR-Cas systems, such as CRISPR-associated transposons (CASTs), has resulted in the development of novel genome editing tools. Recently, research has expanded to systems associated with obligate mobile element guided activity (OMEGA) RNAs, including ancestral CRISPR-Cas and eukaryotic Fanzor systems, which are expected to complement the conventional CRISPR-Cas systems. In this review, we briefly introduce the features of various CRISPR-Cas systems and their application in diverse animal models.

2.
Nat Chem Biol ; 19(3): 390, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36797407
3.
Methods Mol Biol ; 2606: 3-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592303

RESUMO

DNA base editors, one of the CRISPR-based genome editing tools, can induce targeted point mutations at desired sites. Their superiority is based on the fact that they can perform efficient and precise gene editing without generating a DNA double-strand break (DSB) or requiring a donor DNA template. Since they were first developed, significant efforts have been made to improve DNA base editors in order to overcome problems such as off-target edits on DNA/RNA and bystander mutations in editing windows. Here, we provide an overview of DNA base editors with a summary about the history of development of DNA base editors and report on efforts to improve them.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Mutação , Mutação Puntual , DNA/genética
4.
Nat Chem Biol ; 18(9): 920-921, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35915258
5.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203807

RESUMO

Genome editing using CRISPR-Cas9 nucleases is based on the repair of the DNA double-strand break (DSB). In eukaryotic cells, DSBs are rejoined through homology-directed repair (HDR), non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ) pathways. Among these, it is thought that the NHEJ pathway is dominant and occurs throughout a cell cycle. NHEJ-based DSB repair is known to be error-prone; however, there are few studies that delve into it deeply in endogenous genes. Here, we quantify the degree of NHEJ-based DSB repair accuracy (termed NHEJ accuracy) in human-originated cells by incorporating exogenous DNA oligonucleotides. Through an analysis of joined sequences between the exogenous DNA and the endogenous target after DSBs occur, we determined that the average value of NHEJ accuracy is approximately 75% in maximum in HEK 293T cells. In a deep analysis, we found that NHEJ accuracy is sequence-dependent and the value at the DSB end proximal to a protospacer adjacent motif (PAM) is relatively lower than that at the DSB end distal to the PAM. In addition, we observed a negative correlation between the insertion mutation ratio and the degree of NHEJ accuracy. Our findings would broaden the understanding of Cas9-mediated genome editing.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Clivagem do DNA , Reparo do DNA por Junção de Extremidades/genética , Sequência de Bases , DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutação/genética , Oligonucleotídeos/metabolismo , RNA Guia de Cinetoplastídeos/genética , Deleção de Sequência/genética
6.
Comput Struct Biotechnol J ; 19: 2477-2485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025938

RESUMO

Gene manipulation is a useful approach for understanding functions of genes and is important for investigating basic mechanisms of brain function on the level of single neurons and circuits. Despite the development and the wide range of applications of CRISPR-Cas9 and base editors (BEs), their implementation for an analysis of individual neurons in vivo remained limited. In fact, conventional gene manipulations are generally achieved only on the population level. Here, we combined either CRISPR-Cas9 or BEs with the targeted single-cell electroporation technique as a proof-of-concept test for gene manipulation in single neurons in vivo. Our assay consisted of CRISPR-Cas9- or BEs-induced gene knockout in single Purkinje cells in the cerebellum. Our results demonstrate the feasibility of both gene editing and base editing in single cells in the intact brain, providing a tool through which molecular perturbations of individual neurons can be used for analysis of circuits and, ultimately, behaviors.

7.
Sci Rep ; 10(1): 18227, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106552

RESUMO

The myristoylated zeta inhibitory peptide (ZIP), which was originally developed as a protein kinase C/Mζ (PKCζ/PKMζ) inhibitor, is known to produce the loss of different forms of memories. However, ZIP induces memory loss even in the absence of PKMζ, and its mechanism of action, therefore, remains elusive. Here, through a kinome-wide screen, we found that glycogen synthase kinase 3 beta (GSK-3ß) was robustly activated by ZIP in vitro. ZIP induced depotentiation (a cellular substrate of memory erasure) of conditioning-induced potentiation at LA synapses, and the ZIP-induced depotentiation was prevented by a GSK-3ß inhibitor, 6-bromoindirubin-3-acetoxime (BIO-acetoxime). Consistently, GSK-3ß inhibition by BIO-acetoxime infusion or GSK-3ß knockdown by GSK-3ß shRNA in the LA attenuated ZIP-induced disruption of learned fear. Furthermore, conditioned fear was decreased by expression of a non-inhibitable form of GSK-3ß in the LA. Our findings suggest that GSK-3ß activation is a critical step for ZIP-induced disruption of memory.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Medo/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Aprendizagem/fisiologia , Lipopeptídeos/farmacologia , Memória/fisiologia , Proteína Quinase C/antagonistas & inibidores , Animais , Medo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Modelos Animais , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
8.
Mol Ther ; 28(9): 1938-1952, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32763143

RESUMO

CRISPR-mediated DNA base editors, which include cytosine base editors (CBEs) and adenine base editors (ABEs), are promising tools that can induce point mutations at desired sites in a targeted manner to correct or disrupt gene expression. Their high editing efficiency, coupled with their ability to generate a targeted mutation without generating a DNA double-strand break (DSB) or requiring a donor DNA template, suggests that DNA base editors will be useful for treating genetic diseases, among other applications. However, this hope has recently been challenged by the discovery of DNA base editor shortcomings, including off-target DNA editing, the generation of bystander mutations, and promiscuous deamination effects in both DNA and RNA, which arise from the main DNA base editor constituents, a Cas nuclease variant and a deaminase. In this review, we summarize information about the DNA base editors that have been developed to date, introduce their associated potential challenges, and describe current efforts to minimize or mitigate those issues of DNA base editors.


Assuntos
Sistemas CRISPR-Cas , DNA/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Proteína 9 Associada à CRISPR/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , Desaminação , Humanos , Mutação Puntual , RNA Guia de Cinetoplastídeos/metabolismo
9.
Exp Mol Med ; 52(7): 1016-1027, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32651459

RESUMO

The CRISPR-Cas system has undoubtedly revolutionized the genome editing field, enabling targeted gene disruption, regulation, and recovery in a guide RNA-specific manner. In this review, we focus on currently available gene recovery strategies that use CRISPR nucleases, particularly for the treatment of genetic disorders. Through the action of DNA repair mechanisms, CRISPR-mediated DNA cleavage at a genomic target can shift the reading frame to correct abnormal frameshifts, whereas DNA cleavage at two sites, which can induce large deletions or inversions, can correct structural abnormalities in DNA. Homology-mediated or homology-independent gene recovery strategies that require donor DNAs have been developed and widely applied to precisely correct mutated sequences in genes of interest. In contrast to the DNA cleavage-mediated gene correction methods listed above, base-editing tools enable base conversion in the absence of donor DNAs. In addition, CRISPR-associated transposases have been harnessed to generate a targeted knockin, and prime editors have been developed to edit tens of nucleotides in cells. Here, we introduce currently developed gene recovery strategies and discuss the pros and cons of each.


Assuntos
Sistemas CRISPR-Cas/genética , Genes , DNA/genética , Clivagem do DNA , Reparo do DNA/genética , Edição de Genes
10.
Proc Natl Acad Sci U S A ; 114(32): 8631-8636, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739891

RESUMO

Amyloid-ß (Aß) is thought to play an essential pathogenic role in Alzheimer´s disease (AD). A key enzyme involved in the generation of Aß is the ß-secretase BACE, for which powerful inhibitors have been developed and are currently in use in human clinical trials. However, although BACE inhibition can reduce cerebral Aß levels, whether it also can ameliorate neural circuit and memory impairments remains unclear. Using histochemistry, in vivo Ca2+ imaging, and behavioral analyses in a mouse model of AD, we demonstrate that along with reducing prefibrillary Aß surrounding plaques, the inhibition of BACE activity can rescue neuronal hyperactivity, impaired long-range circuit function, and memory defects. The functional neuronal impairments reappeared after infusion of soluble Aß, mechanistically linking Aß pathology to neuronal and cognitive dysfunction. These data highlight the potential benefits of BACE inhibition for the effective treatment of a wide range of AD-like pathophysiological and cognitive impairments.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Inibidores de Proteases/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/patologia
11.
Sci Rep ; 6: 31069, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488731

RESUMO

Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Estimulação Acústica , Animais , Condicionamento Psicológico , Técnicas In Vitro , Potenciação de Longa Duração , Masculino , Plasticidade Neuronal , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Som
12.
Nat Neurosci ; 18(12): 1725-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551546

RESUMO

Among the most promising approaches for treating Alzheimer's disease is immunotherapy with amyloid-ß (Aß)-targeting antibodies. Using in vivo two-photon imaging in mouse models, we found that two different antibodies to Aß used for treatment were ineffective at repairing neuronal dysfunction and caused an increase in cortical hyperactivity. This unexpected finding provides a possible cellular explanation for the lack of cognitive improvement by immunotherapy in human studies.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/imunologia , Imunoterapia/métodos , Neurônios/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
13.
Front Behav Neurosci ; 8: 269, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25152720

RESUMO

There is conflicting evidence regarding whether calcium-permeable receptors are removed during group I mGluR-mediated synaptic depression. In support of this hypothesis, AMPAR rectification, a correlative index of the synaptic expression of GluA2-lacking calcium-permeable AMPARs (CP-AMPARs), is known to decrease after the induction of several types of group I mGluR-mediated long-term depression (LTD), suggesting that a significant proportion of synaptic CP-AMPARs is removed during synaptic depression. We have previously demonstrated that fear conditioning-induced synaptic potentiation in the lateral amygdala is reversed by group 1 mGluR-mediated depotentiation. Here, we examined whether CP-AMPARs are removed by mGluR1-mediated depotentiation of fear conditioning-induced synaptic potentiation. The synaptic expression of CP-AMPARs was negligible before, increased significantly 12 h after, and returned to baseline 48 h after fear conditioning, as evidenced by the changes in the sensitivity of lateral amygdala synaptic responses to NASPM. Importantly, the sensitivity to NASPM was not altered after induction of depotentiation. Our findings, together with previous results, suggest that the removal of CP-AMPARs is not required for the depotentiation of fear conditioning-induced synaptic potentiation at lateral amygdala synapses.

14.
PLoS One ; 9(6): e100108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24925360

RESUMO

Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the GluA2-lacking AMPAR activity and GluA1 phosphorylation at Ser831 are required for ABA renewal.


Assuntos
Tonsila do Cerebelo/metabolismo , Receptores de AMPA/metabolismo , Estresse Psicológico/metabolismo , Animais , Condicionamento Clássico , Medo , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/genética , Estresse Psicológico/fisiopatologia
15.
Nat Neurosci ; 16(10): 1436-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23974710

RESUMO

Fear renewal, a widely pursued model of post-traumatic stress disorder and phobias, refers to the context-specific relapse of conditioned fear after extinction. However, its molecular mechanisms are largely unknown. We found that renewal-inducing stimuli, generally believed to be insufficient to induce synaptic plasticity, enhanced excitatory synaptic strength, activity of synaptic GluA2-lacking AMPA receptors and Ser831 phosphorylation of synaptic surface GluA1 in the lateral nucleus of the amygdala (LAn) of fear-extinguished rats. Consistently, the induction threshold for LAn synaptic potentiation was considerably lowered after extinction, and renewal occluded this low-threshold potentiation. The low-threshold potentiation (a potential cellular substrate for renewal), but not long-term potentiation, was attenuated by dialysis into LAn neurons of a GluA1-derived peptide that competes with Ser831-phosphorylated GluA1. Microinjections of the same peptide into the LAn attenuated fear renewal, but not fear learning. Our findings suggest that GluA1 phosphorylation constitutes a promising target for clinical treatment of aberrant fear-related disorders.


Assuntos
Tonsila do Cerebelo/metabolismo , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Receptores de AMPA/metabolismo , Serina/metabolismo , Animais , Medo/psicologia , Masculino , Técnicas de Cultura de Órgãos , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Serina/genética
16.
Biochem Biophys Res Commun ; 434(1): 87-94, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23542466

RESUMO

Auditory fear conditioning is a well-characterized rodent learning model where a neutral auditory cue is paired with an aversive outcome to induce associative fear memory. The storage of long-term auditory fear memory requires long-term potentiation (LTP) in the lateral amygdala and de novo protein synthesis. Although many studies focused on individual proteins have shown their contribution to LTP and fear conditioning, non-biased genome-wide studies have only recently been possible with microarrays, which nevertheless fall short of measuring changes at the level of proteins. Here we employed quantitative proteomics to examine the expression of hundreds of proteins in the lateral amygdala in response to auditory fear conditioning. We found that various proteins previously implicated in LTP, learning and axon/dendrite growth were regulated by fear conditioning. A substantial number of proteins that were regulated by fear conditioning have not yet been studied specifically in learning or synaptic plasticity.


Assuntos
Condicionamento Psicológico/fisiologia , Medo/fisiologia , Proteômica/métodos , Estimulação Acústica , Tonsila do Cerebelo/fisiologia , Animais , Masculino , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Mapas de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
17.
Neurosci Lett ; 531(2): 193-7, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23103715

RESUMO

Cyclothiazide is a well-known AMPAR potentiator, but it has also been shown to enhance the probability of presynaptic release in some cases. Interestingly, cyclothiazide has been shown to reveal AMPA EPSCs at silent CA3-CA1 synapses (which exhibit NMDA EPSCs but not AMPA EPSCs) in the hippocampus of neonatal or developing rats, but this particular result has not been reproduced at other types of synapses. Although this discrepancy may be due to the different mechanisms underlying silent synapses in distinct brain subregions, it is also possible that cyclothiazide has pre- and postsynaptic molecular targets that are differentially expressed at the different types (or different developing stages) of synapses. In this study, we reexamined, using a new AMPAR potentiator, LY404187, whether AMPAR potentiation leads to the conversion of silent CA3-CA1 synapses into functional synapses (exhibiting both AMPA and NMDA EPSCs) in the hippocampus of neonatal rats. LY404187 did not appear to alter the probability of presynaptic release, as evidenced by the lack of significant changes in both the amplitude and the paired-pulse facilitation ratio (an index of release probability) of NMDA EPSCs. LY404187 enhanced both the amplitude and 1/CV(2) (CV: coefficient of variation) of AMPA EPSCs but not NMDA EPSCs. Because an increase in 1/CV(2) reflects an increased number of functional synapses and/or an enhanced release probability, the LY404187-induced increase in the 1/CV(2) value of AMPA EPSCs, but not NMDA EPSCs, likely indicates an increased number of synapses exhibiting AMPA EPSCs but not an increased number of synapses exhibiting NMDA EPSCs. Because AMPARs and NMDARs are co-localized at the same synapses, our findings are consistent with a scenario in which LY404187 enables silent synapses to acquire AMPA EPSCs.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sulfonamidas/farmacologia , Sinapses/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
18.
Neurosci Lett ; 506(1): 121-5, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22079527

RESUMO

Late-phase long-term potentiation (L-LTP) of excitatory synaptic transmission at thalamic input synapses onto the lateral amygdala (T-LA synapses) has been proposed as a cellular substrate for long-term fear memory. This notion is evidenced primarily by previous reports in which the same pharmacological treatments block both T-LA L-LTP and the consolidation of fear memory. In this study, we report that fear conditioning occludes L-LTP at T-LA synapses in brain slices prepared after fear memory consolidation. L-LTP was restored either when synaptic depotentiation was induced prior to L-LTP induction in brain slices prepared from conditioned rats or when brain slices were prepared from conditioned rats that had been exposed to subsequent fear extinction, which is a behavior paradigm known to induce in vivo synaptic depotentiation at T-LA synapses. These results suggest that fear conditioning recruits L-LTP-like mechanisms that are reversible and saturable at T-LA synapses.


Assuntos
Tonsila do Cerebelo/citologia , Condicionamento Psicológico/fisiologia , Medo , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Tálamo/citologia , Animais , Biofísica , Estimulação Elétrica , Extinção Psicológica/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Fatores de Tempo
19.
PLoS One ; 6(9): e24260, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949700

RESUMO

It is generally believed that after memory consolidation, memory-encoding synaptic circuits are persistently modified and become less plastic. This, however, may hinder the remaining capacity of information storage in a given neural circuit. Here we consider the hypothesis that memory-encoding synaptic circuits still retain reversible plasticity even after memory consolidation. To test this, we employed a protocol of auditory fear conditioning which recruited the vast majority of the thalamic input synaptic circuit to the lateral amygdala (T-LA synaptic circuit; a storage site for fear memory) with fear conditioning-induced synaptic plasticity. Subsequently the fear memory-encoding synaptic circuits were challenged with fear extinction and re-conditioning to determine whether these circuits exhibit reversible plasticity. We found that fear memory-encoding T-LA synaptic circuit exhibited dynamic efficacy changes in tight correlation with fear memory strength even after fear memory consolidation. Initial conditioning or re-conditioning brought T-LA synaptic circuit near the ceiling of their modification range (occluding LTP and enhancing depotentiation in brain slices prepared from conditioned or re-conditioned rats), while extinction reversed this change (reinstating LTP and occluding depotentiation in brain slices prepared from extinguished rats). Consistently, fear conditioning-induced synaptic potentiation at T-LA synapses was functionally reversed by extinction and reinstated by subsequent re-conditioning. These results suggest reversible plasticity of fear memory-encoding circuits even after fear memory consolidation. This reversible plasticity of memory-encoding synapses may be involved in updating the contents of original memory even after memory consolidation.


Assuntos
Tonsila do Cerebelo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Clássico/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Glicina/análogos & derivados , Glicina/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Resorcinóis/farmacologia , Potenciais Sinápticos/fisiologia , Tálamo/citologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
20.
Rev Neurosci ; 22(2): 205-29, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21476941

RESUMO

Memories are fragile and easily forgotten at first, but after a consolidation period of hours to weeks, are inscribed in our brains as stable traces, no longer vulnerable to conventional amnesic treatments. Retrieval of a memory renders it labile, akin to the early stages of consolidation. This phenomenon has been explored as memory reactivation, in the sense that the memory is temporarily 'deconsolidated', allowing a short time window for amnesic intervention. This window closes again after reconsolidation, which restores the stability of the memory. In contrast to this 'transient deconsolidation' and the short-spanned amnesic effects of consolidation blockers, some specific treatments can disrupt even consolidated memory, leading to apparent amnesia. We propose the term 'amnesic deconsolidation' to describe such processes that lead to disruption of consolidated memory and/or consolidated memory traces. We review studies of these 'amnesic deconsolidation' treatments that enhance memory extinction, alleviate relapse, and reverse learning-induced plasticity. The transient deconsolidation that memory retrieval induces and the amnesic deconsolidation that these regimes induce both seem to dislodge a component that stabilizes consolidated memory. Characterizing this component, at both molecular and network levels, will provide a key to developing clinical treatments for memory-related disorders and to defining the consolidated memory trace.


Assuntos
Amnésia/fisiopatologia , Extinção Psicológica/fisiologia , Medo , Rememoração Mental/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Extinção Psicológica/efeitos dos fármacos , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...