Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689937

RESUMO

The motor and nonmotor symptoms of Parkinson's disease (PD) correlate with the formation and propagation of aberrant α-synuclein aggregation. This protein accumulation is a pathological hallmark of the disease. Our group recently showed that peucedanocoumarin III (PCIII) possesses the ability to disaggregate ß sheet aggregate structures, including α-synuclein fibrils. This finding suggests that PCIII could be a therapeutic lead compound in PD treatment. However, the translational value of PCIII and its safety information have never been explored in relevant animal models of PD. Therefore, we first designed and validated a sequence of chemical reactions for the large scale organic synthesis of pure PCIII in a racemic mixture. The synthetic PCIII racemate facilitated clearance of repeated ß sheet aggregate (ß23), and prevented ß23-induced cell toxicity to a similar extent to that of purified PCIII. Given these properties, the synthetic PCIII's neuroprotective function was assessed in 6-hydroxydopamine (6-OHDA)-induced PD mouse models. The PCIII treatment (1 mg/kg/day) in a 6-OHDA-induced PD mouse model markedly suppressed Lewy-like inclusions and prevented dopaminergic neuron loss. To evaluate the safety profiles of PCIII, high dose PCIII (10 mg/kg/day) was administered intraperitoneally to two-month-old mice. Following 7 days of PCIII treatment, PCIII distributed to various tissues, with substantial penetration into brains. The mice that were treated with high dose PCIII had no structural abnormalities in the major organs or neuroinflammation. In addition, high dose PCIII (10 mg/kg/day) in mice had no adverse impact on motor function. These findings suggest that PCIII has a relatively high therapeutic index. Given the favorable safety features of PCIII and neuroprotective function in the PD mouse model, it may become a promising disease-modifying therapy in PD to regulate pathogenic α-synuclein aggregation.


Assuntos
Cumarínicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cumarínicos/efeitos adversos , Cumarínicos/síntese química , Cumarínicos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacocinética , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Distribuição Tecidual
2.
Mar Drugs ; 17(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461968

RESUMO

In this paper, the chemical conjugation of marine natural products with other bioactive molecules for developing an advanced anti-cancer agent is described. Structural complexity and the extraordinary biological features of marine natural products have led to tremendous research in isolation, structural elucidation, synthesis, and pharmacological evaluation. In addition, this basic scientific achievement has made it possible to hybridize two or more biologically important skeletons into a single compound. The hybridization strategy has been used to identify further opportunities to overcome certain limitations, such as structural complexity, scarcity problems, poor solubility, severe toxicity, and weak potency of marine natural products for advanced development in drug discovery. Further, well-designed marine chimera molecules can function as a platform for target discovery or degradation. In this review, the design, synthesis, and biological evaluation of recent marine chimera molecules are presented.


Assuntos
Antineoplásicos/síntese química , Organismos Aquáticos/química , Produtos Biológicos/química , Desenho de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Técnicas de Química Sintética/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Solubilidade
3.
Molecules ; 24(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888158

RESUMO

Employing iPrMgCl as an advanced base instead of lithium hexamethyldisilazane (LHMDS) resulted in dramatic improvements in aza-Claisen rearrangement. This advance is considered responsible for the increased bulkiness of the alkoxide moiety (including magnesium cation and ligands), followed by a resultant conformational change of the transition state. To support this hypothesis, various substrates of aza-Claisen rearrangement were prepared and screened. In addition, a molecular dynamic simulation study was performed to investigate and compare the structural stability of reaction intermediates.


Assuntos
Compostos Aza/química , Técnicas de Química Sintética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...