Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932964

RESUMO

Octamer-binding transcription factor 4 (Oct4) plays an important role in maintaining pluripotency in embryonic stem cells and is closely related to the malignancies of various cancers. Although posttranslational modifications of Oct4 have been widely studied, most of these have not yet been fully characterized, especially in cancer. In this study, we investigated the role of phosphorylation of serine 236 of OCT4 [OCT4 (S236)] in human germ cell tumors (GCTs). OCT4 was phosphorylated at S236 in a cell cycle-dependent manner in a patient sample and GCT cell lines. The substitution of endogenous OCT4 by a mimic of phosphorylated OCT4 with a serine-to-aspartate mutation at S236 (S236D) resulted in tumor cell differentiation, growth retardation, and inhibition of tumor sphere formation. GCT cells expressing OCT4 S236D instead of endogenous OCT4 were similar to cells with OCT4 depletion at the mRNA transcript level as well as in the phenotype. OCT4 S236D also induced tumor cell differentiation and growth retardation in mouse xenograft experiments. Inhibition of protein phosphatase 1 by chemicals or short hairpin RNAs increased phosphorylation at OCT4 (S236) and resulted in the differentiation of GCTs. These results reveal the role of OCT4 (S236) phosphorylation in GCTs and suggest a new strategy for suppressing OCT4 in cancer.

2.
Nucleic Acids Res ; 48(11): 6340-6352, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32383752

RESUMO

API5 (APoptosis Inhibitor 5) and nuclear FGF2 (Fibroblast Growth Factor 2) are upregulated in various human cancers and are correlated with poor prognosis. Although their physical interaction has been identified, the function related to the resulting complex is unknown. Here, we determined the crystal structure of the API5-FGF2 complex and identified critical residues driving the protein interaction. These findings provided a structural basis for the nuclear localization of the FGF2 isoform lacking a canonical nuclear localization signal and identified a cryptic nuclear localization sequence in FGF2. The interaction between API5 and FGF2 was important for mRNA nuclear export through both the TREX and eIF4E/LRPPRC mRNA export complexes, thus regulating the export of bulk mRNA and specific mRNAs containing eIF4E sensitivity elements, such as c-MYC and cyclin D1. These data show the newly identified molecular function of API5 and nuclear FGF2, and provide a clue to understanding the dynamic regulation of mRNA export.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Cristalografia por Raios X , Ciclina D1/metabolismo , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Biochem Biophys Res Commun ; 503(3): 1980-1986, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30078675

RESUMO

Germ cell tumours (GCTs) are one of the most threatening malignancies in young men and women. Although several reports have suggested the importance of OCT4 in human GCTs, its role has not been clearly investigated on a molecular level. In this study, we revealed GCT-specific direct transcriptional target genes of OCT4. Conditional knockdown of OCT4 in GCT cell lines reduced cell proliferation by affecting both cell cycle and death. Knockdown of OCT4 also reduced stemness of GCTs, as assessed by the expression of other stemness factors, alkaline phosphatase staining, and tumour sphere formation ability. Analysis of whole mRNA expression patterns among GCT cells harbouring endogenous, depleted, and rescued OCT4 revealed 1133 OCT4 target genes in GCT. Combined analysis of both the chromatin binding signature of OCT4 and the genes whose expression levels were changed by OCT4 revealed 258 direct target genes of OCT4 in GCTs. In a similar way, 594 direct target genes in normal embryonic stem cells (ESCs) were identified. Among these two sets of OCT4 direct target genes, 38 genes were common between GCTs and ESCs, most of which were related to regulation of pluripotency, and 220 genes were specific to GCTs, most of which were related to focal adhesion and extracellular matrix organisation. These results provide a molecular basis for how OCT4 regulates GCT stemness and will aid our understanding of the role of OCT4 in other cancers.


Assuntos
Matriz Extracelular/genética , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doxiciclina/farmacologia , Citometria de Fluxo , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/genética , Transcrição Gênica/genética
4.
Exp Mol Med ; 48(12): e277, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27932791

RESUMO

A small proportion of cancer cells have stem-cell-like properties, are resistant to standard therapy and are associated with a poor prognosis. The metabolism of such drug-resistant cells differs from that of nearby non-resistant cells. In this study, the metabolism of drug-resistant lung adenocarcinoma cells was investigated. The expression of genes associated with oxidative phosphorylation in the mitochondrial membrane was negatively correlated with the prognosis of lung adenocarcinoma. Because the mitochondrial membrane potential (MMP) reflects the functional status of mitochondria and metastasis is the principal cause of death due to cancer, the relationship between MMP and metastasis was evaluated. Cells with a higher MMP exhibited greater migration and invasion than those with a lower MMP. Cells that survived treatment with cisplatin, a standard chemotherapeutic drug for lung adenocarcinoma, exhibited increased MMP and enhanced migration and invasion compared with parental cells. Consistent with these findings, inhibition of mitochondrial activity significantly impeded the migration and invasion of cisplatin-resistant cells. RNA-sequencing analysis indicated that the expression of mitochondrial complex genes was upregulated in cisplatin-resistant cells. These results suggested that drug-resistant cells have a greater MMP and that inhibition of mitochondrial activity could be used to prevent metastasis of drug-resistant lung adenocarcinoma cells.


Assuntos
Adenocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Mitocôndrias/patologia , Invasividade Neoplásica/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...