Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 50(10): 6490-6501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690458

RESUMO

BACKGROUND: Kilo-voltage cone-beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely-used Feldkamp-Davis-Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary-based methods, and prior information-based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. PURPOSE: One of the primary challenges in IR-based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high-resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. METHODS: The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp-Davis-Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. RESULTS: We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. CONCLUSION: The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high-definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.

2.
Oncotarget ; 8(20): 33827-33835, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28476047

RESUMO

Compared to analytical reconstruction by Feldkamp-Davis-Kress (FDK), simultaneous algebraic reconstruction technique (SART) offers a higher degree of flexibility in input measurements and often produces superior quality images. Due to the iterative nature of the algorithm, however, SART requires intense computations which have prevented its use in clinical practice. In this paper, we developed a fast-converging SART-type algorithm and showed its clinical feasibility in CBCT reconstructions. Inspired by the quasi-orthogonal nature of the x-ray projections in CBCT, we implement a simple yet much faster algorithm by computing Barzilai and Borwein step size at each iteration. We applied this variable step-size (VS)-SART algorithm to numerical and physical phantoms as well as cancer patients for reconstruction. By connecting the SART algebraic problem to the statistical weighted least squares problem, we enhanced the reconstruction speed significantly (i.e., less number of iterations). We further accelerated the reconstruction speed of algorithms by using the parallel computing power of GPU.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico , Humanos , Imageamento Tridimensional , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Imagens de Fantasmas
3.
Oncotarget ; 7(52): 87342-87350, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27894103

RESUMO

The purpose of this study is to develop a fast and convergence proofed CBCT reconstruction framework based on the compressed sensing theory which not only lowers the imaging dose but also is computationally practicable in the busy clinic. We simplified the original mathematical formulation of gradient projection for sparse reconstruction (GPSR) to minimize the number of forward and backward projections for line search processes at each iteration. GPSR based algorithms generally showed improved image quality over the FDK algorithm especially when only a small number of projection data were available. When there were only 40 projections from 360 degree fan beam geometry, the quality of GPSR based algorithms surpassed FDK algorithm within 10 iterations in terms of the mean squared relative error. Our proposed GPSR algorithm converged as fast as the conventional GPSR with a reasonably low computational complexity. The outcomes demonstrate that the proposed GPSR algorithm is attractive for use in real time applications such as on-line IGRT.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos
4.
Phys Med Biol ; 59(21): 6565-82, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25320866

RESUMO

The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires 'at most one function evaluation' in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a 'smoothed TV' or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for the head-and-neck patient with only 180 projections, in 131.7 s, further supporting its clinical applicability.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Humanos
5.
Int J Radiat Oncol Biol Phys ; 89(3): 666-73, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24751413

RESUMO

PURPOSE: To demonstrate that utilization of the direction-modulated brachytherapy (DMBT) concept can significantly improve treatment plan quality in the setting of high-dose-rate (HDR) brachytherapy for cervical cancer. METHODS AND MATERIALS: The new, MRI-compatible, tandem design has 6 peripheral holes of 1.3-mm diameter, grooved along a nonmagnetic tungsten-alloy rod (ρ = 18.0 g/cm(3)), enclosed in Delrin tubing (polyoxymethylene, ρ = 1.41 g/cm(3)), with a total thickness of 6.4 mm. The Monte Carlo N-Particle code was used to calculate the anisotropic (192)Ir dose distributions. An in-house-developed inverse planning platform, geared with simulated annealing and constrained-gradient optimization algorithms, was used to replan 15 patient cases (total 75 plans) treated with a conventional tandem and ovoids (T&O) applicator. Prescription dose was 6 Gy. For replanning, we replaced the conventional tandem with that of the new DMBT tandem for optimization but left the ovoids in place and kept the dwell positions as originally planned. All DMBT plans were normalized to match the high-risk clinical target volume V100 coverage of the T&O plans. RESULTS: In general there were marked improvements in plan quality for the DMBT plans. On average, D2cc for the bladder, rectum, and sigmoid were reduced by 0.59 ± 0.87 Gy (8.5% ± 28.7%), 0.48 ± 0.55 Gy (21.1% ± 27.2%), and 0.10 ± 0.38 Gy (40.6% ± 214.9%) among the 75 plans, with best single-plan reductions of 3.20 Gy (40.8%), 2.38 Gy (40.07%), and 1.26 Gy (27.5%), respectively. The high-risk clinical target volume D90 was similar, with 6.55 ± 0.96 Gy and 6.59 ± 1.06 Gy for T&O and DMBT, respectively. CONCLUSIONS: Application of the DMBT concept to cervical cancer allowed for improved organ at risk sparing while achieving similar target coverage on a sizeable patient population, as intended, by maximally utilizing the anatomic information contained in 3-dimensional imaging. A series of mechanical and clinical validations are to be followed.


Assuntos
Braquiterapia/métodos , Imageamento por Ressonância Magnética , Órgãos em Risco/efeitos da radiação , Lesões por Radiação/prevenção & controle , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/radioterapia , Adulto , Algoritmos , Braquiterapia/instrumentação , Colo Sigmoide/efeitos da radiação , Desenho de Equipamento , Feminino , Humanos , Radioisótopos de Irídio/uso terapêutico , Pessoa de Meia-Idade , Método de Monte Carlo , Dosagem Radioterapêutica , Reto/efeitos da radiação , Tungstênio , Bexiga Urinária/efeitos da radiação , Adulto Jovem
6.
Med Phys ; 40(12): 121710, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24320496

RESUMO

PURPOSE: Utilization of respiratory correlated four-dimensional cone-beam computed tomography (4DCBCT) has enabled verification of internal target motion and volume immediately prior to treatment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT reconstruction algorithm framework called motion-map constrained image reconstruction (MCIR), that allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT) scan. METHODS: The unknown 4DCBCT volume at each phase was mathematically modeled as a combination of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix. The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the matrix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high motion would be aggressively updated by the phase-wise sorted projections and the voxels with less motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient. The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK, (2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known prior image constrained compressed sensing (PICCS). RESULTS: Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising the image quality. Moreover, in comparison with other published algorithms, the image quality of the MCIR algorithm is shown to be excellent. CONCLUSIONS: This work demonstrates the potential for providing high-quality 4DCBCT during on-line image-guided radiation therapy (IGRT), without increasing the imaging dose. The results showed that (at least) 20 phase images could be reconstructed using the same projections data, used to reconstruct a single FB-3DCBCT, without streak artifacts that are caused by insufficient projections.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento , Algoritmos , Humanos , Imagens de Fantasmas , Doses de Radiação
7.
Med Phys ; 40(9): 091704, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24007137

RESUMO

PURPOSE: The aim of this work was to design a novel high-dose rate (HDR) ((192)Ir) brachytherapy applicator for treatment of rectal carcinomas that uses tungsten shielding for possibly improved dosimetric results over commercial brachytherapy applicator(s). METHODS: A set of 15 single-depth applicators and one dual-depth applicator were designed and simulated using Monte Carlo (MCNPX). All applicators simulated were high-density tungsten alloy cylinders, 16-mm in diameter, and 60-mm long, with longitudinal grooves within which an (192)Ir source can be placed. The single-depth designs varied regarding the number and depth of these grooves, ranging from 8 to 16 and 1-mm to 3-mm, respectively. The dual-depth design had ten channels, each of which had two depths at which the source could be placed. Optimized treatment plans were generated for each design on data from 13 treated patients (36 fractions) with asymmetrical clinical target volumes (CTVs). All results were compared against the clinically treated plans which used intracavitary mold applicator (ICMA), as well as a recently designed, highly automated, and collimated intensity modulation device named dynamic modulated brachytherapy (DMBT) device. RESULTS: All applicator designs outperformed the ICMA in every calculated dosimetric criteria, except the total dwell times (∼30% increase). There were clear, but relative, tradeoffs regarding both the number of channels and the depth of each channel. Overall, the 12-channel, 1-mm depth, and 14-channel 2-mm depth designs had the best results of the simpler designs, sparing the healthy rectal tissues the most while achieving comparable CTV coverage with the dose heterogeneity index and lateral spill doses improving by over 10% and the contralateral healthy rectum dose dropping over 30% compared to ICMA. The ten-channel dual-depth design outperformed each single-depth design, yielding the best coverage and sparing. CONCLUSIONS: New grooved tungsten HDR-brachytherapy devices have been designed and simulated. The results of this work attest to the capability of these new, highly anisotropic, intelligently shielded applicators to limit dose to healthy tissues while maintaining a conformal prescription dose to the CTV.


Assuntos
Braquiterapia/instrumentação , Doses de Radiação , Proteção Radiológica/instrumentação , Neoplasias Retais/radioterapia , Desenho de Equipamento , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tungstênio
8.
Med Phys ; 40(1): 011718, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23298088

RESUMO

PURPOSE: All forms of past and current high-dose-rate brachytherapy utilize immobile applicators during treatment delivery. The only moving part is the source itself. This paradigm misses an important degree of freedom that, if explored, can in some instances produce previously unachievable dose conformality; that is, the dynamic motion of the applicator itself during treatment delivery. Monte Carlo and treatment planning simulations were used to illustrate the potential benefits of moving applicators for rectal cancer applications in particular. This concept is termed dynamic modulated brachytherapy (DMBT). METHODS: The DMBT system uses a high-density, 18.0 g∕cm(3), 45 mm long tungsten alloy shield, cylindrical in shape, with a small window on one side to encapsulate a (192)Ir source, to create collimation that results in a highly directional beam profile. This shield can be dynamically translated and rotated, using an attached robotic arm, during treatment to create a volumetric modulated arc therapy-type delivery, but from inside the rectal cavity. Monte Carlo simulations and planning optimization algorithms were developed inhouse to evaluate the effectiveness of this new approach using 36 clinical treatment plans comprised of 13 patients each treated using the intracavitary mold applicator (ICMA, Nucletron, The Netherlands) to quantify the potential clinical benefit. The prescription dose was 10 Gy∕fx and the group had an average clinical target volume of 9.0 ± 3.5 cm(3). Ideal phantom geometries were used to evaluate the impact of various shield dimensions and designs on the resulting plan quality. RESULTS: Simulations of ideal phantom geometries found that shields as small as 10 mm in diameter can produce high quality plans. For the clinical patient cases, compared to the ICMA, for equal prescription tumor coverage, the DMBT plans provided >30% decrease in D(5) (high dose volume) resulting in a ∼40% decrease in dose heterogeneity index. In addition, mean dose and D(98) showed a reduction (typically 40%-60%) on all critical structures evaluated. However, for a 10 Gy prescribed dose there was an increase in total treatment time on average from 7.6 to 20.8 min for a source with an air-kerma strength of 40.25 kU (10 Ci). CONCLUSIONS: Dosimetric properties of a novel DMBT system have been described and evaluated. Comparison with the ICMA commercial applicator has shown it to be a prospective step forward in high-dose-rate brachytherapy (192)Ir technology. Dynamic motion of an applicator during treatment, for any applicator and site in general, can provide additional degrees of freedom that, if properly considered, can potentially increase the plan quality significantly.


Assuntos
Braquiterapia/métodos , Neoplasias Retais/radioterapia , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Proteção Radiológica , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Incerteza
9.
Med Phys ; 39(10): 6431-42, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039678

RESUMO

PURPOSE: Understanding motion characteristics of liver such as, interfractional and intrafractional motion variability, difference in motion within different locations in the organ, and their complex relationship with the breathing cycles are particularly important for image-guided liver SBRT. The purpose of this study was to investigate such motion characteristics based on fiducial markers tracked with the x-ray projections of the CBCT scans, taken immediately prior to the treatments. METHODS: Twenty liver SBRT patients were analyzed. Each patient had three fiducial markers (2 × 5-mm gold) percutaneously implanted around the gross tumor. The prescription ranged from 2 to 8 fractions per patient. The CBCT projections data for each fraction (∼650 projections∕scan), for each patient, were analyzed and the 2D positions of the markers were extracted using an in-house algorithm. In total, >55 000 x-ray projections were analyzed from 85 CBCT scans. From the 2D extracted positions, a 3D motion trajectory of the markers was constructed, from each CBCT scans, resulting in left-right (LR), anterior-posterior (AP), and cranio-caudal (CC) location information of the markers with >55 000 data points. The authors then analyzed the interfraction and intrafraction liver motion variability, within different locations in the organ, and as a function of the breathing cycle. The authors also compared the motion characteristics against the planning 4DCT and the RPM™ (Varian Medical Systems, Palo Alto, CA) breathing traces. Variations in the appropriate gating window (defined as the percent of the maximum range at which 50% of the marker positions are contained), between fractions were calculated as well. RESULTS: The range of motion for the 20 patients were 3.0 ± 2.0 mm, 5.1 ± 3.1 mm, and 17.9 ± 5.1 mm in the planning 4DCT, and 2.8 ± 1.6 mm, 5.3 ± 3.1 mm, and 16.5 ± 5.7 mm in the treatment CBCT, for LR, AP, and CC directions, respectively. The range of respiratory period was 3.9 ± 0.7 and 4.2 ± 0.8 s during the 4DCT simulation and the CBCT scans, respectively. The authors found that breathing-induced AP and CC motions are highly correlated. That is, all markers moved cranially also moved posteriorly and vice versa, irrespective of the location. The LR motion had a more variable relationship with the AP∕CC motions, and appeared random with respect to the location. That is, when the markers moved toward cranial-posterior direction, 58% of the markers moved to the patient-right, 22% of the markers moved to the patient-left, and 20% of the markers had minimal∕none motion. The absolute difference in the motion magnitude between the markers, in different locations within the liver, had a positive correlation with the absolute distance between the markers (R(2) = 0.69, linear-fit). The interfractional gating window varied significantly for some patients, with the largest having 29.4%-56.4% range between fractions. CONCLUSIONS: This study analyzed the liver motion characteristics of 20 patients undergoing SBRT. A large variation in motion was observed, interfractionally and intrafractionally, and that as the distance between the markers increased, the difference in the absolute range of motion also increased. This suggests that marker(s) in closest proximity to the target be used.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Fígado/fisiopatologia , Movimento , Radiocirurgia/métodos , Cirurgia Assistida por Computador/métodos , Algoritmos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/fisiopatologia , Carcinoma Hepatocelular/cirurgia , Tomografia Computadorizada de Feixe Cônico/normas , Marcadores Fiduciais , Humanos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/fisiopatologia , Neoplasias Hepáticas/cirurgia , Radiocirurgia/normas , Cirurgia Assistida por Computador/normas
10.
Med Phys ; 39(3): 1207-17, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380351

RESUMO

PURPOSE: Compressed sensing theory has enabled an accurate, low-dose cone-beam computed tomography (CBCT) reconstruction using a minimal number of noisy projections. However, the reconstruction time remains a significant challenge for practical implementation in the clinic. In this work, we propose a novel gradient projection algorithm, based on the Gradient-Projection-Barzilai-Borwein formulation (GP-BB), that handles the total variation (TV)-norm regularization-based least squares problem for the CBCT reconstruction in a highly efficient manner, with speed acceptable for routine use in the clinic. METHODS: CBCT is reconstructed by minimizing an energy function consisting of a data fidelity term and a TV-norm regularization term. Both terms are simultaneously minimized by calculating the gradient projection of the energy function with the step size determined using an approximate Hessian calculation at each iteration, based on the Barzilai-Borwein formulation. To speed up the process, a multiresolution optimization is used. In addition, the entire algorithm was designed to run with a single graphics processing unit (GPU) card. To evaluate the performance, the Shepp-Logan numerical phantom, the CatPhan 600 physical phantom, and a clinically-treated head-and-neck patient were acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). For each scan, in total, 364 projections were acquired in a 200° rotation. The imager has 1024 × 768 pixels with 0.388 × 0.388-mm resolution. This was down-sampled to 512 × 384 pixels with 0.776 × 0.776-mm resolution for reconstruction. Evenly spaced angles were subsampled and used for varying the number of projections for the image reconstruction. To assess the performance of our GP-BB algorithm, we have implemented and compared with three compressed sensing-type algorithms, the two of which are popular and published (forward-backward splitting techniques), and the other one with a basic line-search technique. In addition, the conventional Feldkamp-Davis-Kress (FDK) reconstruction of the clinical patient data is compared as well. RESULTS: In comparison with the other compressed sensing-type algorithms, our algorithm showed convergence in ≤30 iterations whereas other published algorithms need at least 50 iterations in order to reconstruct the Shepp-Logan phantom image. With the CatPhan phantom, the GP-BB algorithm achieved a clinically-reasonable image with 40 projections in 12 iterations, in less than 12.6 s. This is at least an order of magnitude faster in reconstruction time compared with the most recent reports utilizing GPU technology given the same input projections. For the head-and-neck clinical scan, clinically-reasonable images were obtained from 120 projections in 34-78 s converging in 12-30 iterations. In this reconstruction range (i.e., 120 projections) the image quality is visually similar to or better than the conventional FDK reconstructed images using 364 projections. This represents a dose reduction of nearly 67% (120∕364 projections) while maintaining a reasonable speed in clinical implementation. CONCLUSIONS: In this paper, we proposed a novel, fast, low-dose CBCT reconstruction algorithm using the Barzilai-Borwein step-size calculation. A clinically viable head-and-neck image can be obtained within ∼34-78 s while simultaneously cutting the dose by approximately 67%. This makes our GP-BB algorithm potentially useful in an on-line image-guided radiation therapy (IGRT).


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Imagens de Fantasmas
11.
Med Phys ; 39(1): 492-502, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22225320

RESUMO

PURPOSE: To assess the temporal and spatial accuracy of the GateCT™ system (VisionRT, London, UK), a recently released respiratory tracking system for 4DCT, under both ideal and nonideal respiratory conditions. METHODS: Three experiments were performed by benchmarking and comparing its results with the ground-truth input data and those generated by the widely used Varian RPM™ system (Real-time Position Management, Varian, Palo Alto, CA). The first experiment used 10 sinusoidal breathing patterns (constant amplitude and frequency using sin(6)ωt), 10 "consistent" patient breathing patterns, and 10 "sporadic" patient breathing patterns. Motion was simulated with the quasar™ Programmable Respiratory Motion Platform (MODUS, London, Canada) as the surrogate. The GateCT™ and RPM™ systems were used to track the breathing patterns. The data from both systems were then analyzed in the Fourier domain, to evaluate temporal/phase accuracy, using the Pearson's correlation coefficient (PCC). The analysis correlated the ground-truth input data against the GateCT™ and RPM™ tracking results, respectively. The second experiment used 10 ideal sinusoidal breathing patterns, five of period 2.0 s, and five of period 5.0 s, with varying abdominal amplitudes found in clinical cases (peak-to-peak range: 1.67-10 mm) to test the sensitivity of the system to reconstruct various range of motion. And, the third experiment used 12 consecutive clinical patients to track the abdominal motion simultaneously by the GateCT™ and RPM™ systems. The baseline of the tracking results from both the two systems was analyzed via the mean-position-estimate (MPE) calculations. All experiments were tracked for at least 120 s. RESULTS: In the first experiment, the average PCC values (±SD) of all thirty breathing patterns were 0.9995 ± 0.00035 and 0.9994 ± 0.00041 for the GateCT™ and the RPM™ system, respectively. These nearly identical results demonstrated similar temporal/phase tracking accuracy for the two systems. The results in the second experiment, however, revealed a pattern for the GateCT™ system in which the uncertainty of its mean-position tracking increased as the amplitude of the breathing pattern decreased. For example, a non-negligible baseline drift of up to 29.3% with respect to the peak-to-peak amplitude of 1.67-mm was observed. On the contrary, the RPM™ system displayed a more consistent recording of amplitudes over time with the greatest drift being <7.7%. The third experiment confirmed these findings in the clinical setting. Consistent decrease in PCC values due to the increase in artificial amplitude drifts, as the breathing amplitude decreased, was found. The lowest PCC value was 0.7239 for a patient with 1.57-mm peak-to-peak amplitude. CONCLUSIONS: The GateCT™ system revealed its consistency in temporal/phase tracking but had limitations in accurately tracking the absolute abdominal positions, thus suggesting its appropriateness for phase-sorting of 4DCT rather than amplitude-sorting. In contrast, the RPM™ system demonstrated stable respiratory signal tracking in all ranges and accurately both in phase and amplitude, and is a robust system to use for both phase-sorting and amplitude-sorting techniques. The impact of the observed mean-position drift in the GateCT™ system on the resulting 4DCT image quality, in amplitude-sorting, needs further investigation.


Assuntos
Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Mecânica Respiratória , Técnicas de Imagem de Sincronização Respiratória/métodos , Software , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Med Phys ; 39(6Part8): 3682, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28518939

RESUMO

PURPOSE: Purpose of this study was to investigate the motion characteristics of liver during SBRT, based on fiducial markers tracked with X-ray projections of CBCT scans, taken immediately prior to each treatment. METHODS: Purpose of this study was to investigate the motion characteristics of liver during SBRT, based on fiducial markers tracked with X-ray projections of CBCT scans, taken immediately prior to each treatment. RESULTS: The range of motion for twenty patients were 3.00 ± 2.04 mm, 5.08 ± 3.12 mm and 17.93 ± 5.11 mm in the planning 4DCT, and 2.77 ± 1.6 mm, 5.29 ± 3.10 mm and 16.46 ± 5.69 mm in the treatment CBCT, for LR, AP, and CC directions, respectively. The range of respiratory period was 3.94 ± 0.65 and 4.18 ± 0.75 seconds during 4DCT simulation and CBCT scans, respectively. We found that breathing-induced AP and CC motions are highly correlated. The absolute difference in motion magnitude between the markers, had a positive correlation with absolute distance between the markers (R2=0.69, linear-fit). The inter-fractional gating window varied significantly for some patients, with the largest having 29.5-56.4% range between fractions. CONCLUSIONS: This study analyzed the liver motion characteristics of 20 patients undergoing SBRT. A large variation in motion was observed, inter- and intra-fractionally, and that as the distance between the markers increased, the difference in the absolute range of motion also increased. This suggests that marker(s) in closest proximity to the target be used. This project was supported by Varian Medical Systems.

13.
Technol Cancer Res Treat ; 10(4): 295-306, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21728386

RESUMO

The purpose of this work is to demonstrate an ultra-fast reconstruction technique for digital tomosynthesis (DTS) imaging based on the algorithm proposed by Feldkamp, Davis, and Kress (FDK) using standard general-purpose graphics processing unit (GPGPU) programming interface. To this end, the FDK-based DTS algorithm was programmed "in-house" with C language with utilization of 1) GPU and 2) central processing unit (CPU) cards. The GPU card consisted of 480 processing cores (2 x 240 dual chip) with 1,242 MHz processing clock speed and 1,792 MB memory space. In terms of CPU hardware, we used 2.68 GHz clock speed, 12.0 GB DDR3 RAM, on a 64-bit OS. The performance of proposed algorithm was tested on twenty-five patient cases (5 lung, 5 liver, 10 prostate, and 5 head-and-neck) scanned either with a full-fan or half-fan mode on our cone-beam computed tomography (CBCT) system. For the full-fan scans, the projections from 157.5°-202.5° (45°-scan) were used to reconstruct coronal DTS slices, whereas for the half-fan scans, the projections from both 157.5°-202.5° and 337.5°-22.5° (2 x 45°-scan) were used to reconstruct larger FOV coronal DTS slices. For this study, we chose 45°-scan angle that contained ~80 projections for the full-fan and ~160 projections with 2 x 45°-scan angle for the half-fan mode, each with 1024 x 768 pixels with 32-bit precision. Absolute pixel value differences, profiles, and contrast-to-noise ratio (CNR) calculations were performed to compare and evaluate the images reconstructed using GPU- and CPU-based implementations. The time dependence on the reconstruction volume was also tested with (512 x 512) x 16, 32, 64, 128, and 256 slices. In the end, the GPU-based implementation achieved, at most, 1.3 and 2.5 seconds to complete full reconstruction of 512 x 512 x 256 volume, for the full-fan and half-fan modes, respectively. In turn, this meant that our implementation can process > 13 projections-per-second (pps) and > 18 pps for the full-fan and half-fan modes, respectively. Since commercial CBCT system nominally acquires 11 pps (with 1 gantry-revolution-per-minute), our GPU-based implementation is sufficient to handle the incoming projections data as they are acquired and reconstruct the entire volume immediately after completing the scan. In addition, on increasing the number of slices (hence volume) to be reconstructed from 16 to 256, only minimal increases in reconstruction time were observed for the GPU-based implementation where from 0.73 to 1.27 seconds and 1.42 to 2.47 seconds increase were observed for the full-fan and half-fan modes, respectively. This resulted in speed improvement of up to 87 times compared with the CPU-based implementation (for 256 slices case), with visually identical images and small pixel-value discrepancies (< 6.3%), and CNR differences (< 2.3%). With this achievement, we have shown that time allocation for DTS image reconstruction is virtually eliminated and that clinical implementation of this approach has become quite appealing. In addition, with the speed achievement, further image processing and real-time applications that was prohibited prior due to time restrictions can now be tempered with.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/radioterapia , Radioterapia Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...