Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(8): 4512-4518, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714354

RESUMO

A hot filament chemical vapor deposition (HFCVD) method was adopted to deposit diamond films at deposition pressures ranging from 2-6 kPa. The effects of deposition pressure on the deposition rate, phase structure, and microstructure of diamond films were investigated. The surface morphology, grain size, micro-structure, and growth rate of the diamond films were analyzed using scanning electron microscopy, X-ray diffraction (XRD), and Raman spectrometry. The experimental results showed that granules on the surface exhibited increasingly compact structure with increasing deposition pressure. The diamond films deposited at various pressures have good compactness, and the particles on the film surfaces are arranged in an ordered manner. All films exhibited orientation along the (111) plane, which was the significant characteristic XRD peak of each diamond film. The (111) peak intensity was the strongest for the film prepared at 2 kPa deposition pressure. Overall, the deposition rate and grain size decreased with increasing deposition pressure, provided other deposition conditions remained unchanged. However, the densification of the microstructure and the nucleation density increased with increasing deposition pressure. Secondary nucleation became more pronounced as deposition pressure increased, and grain size decreased as nucleation density increased.

2.
Korean J Orthod ; 48(3): 163-171, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29732302

RESUMO

OBJECTIVE: The aim of this study was to evaluate the mechanical and biological properties of orthodontic bonding agents containing silver- or zinc-doped bioactive glass (BAG) and determine the antibacterial and remineralization effects of these agents. METHODS: BAG was synthesized using the alkali-mediated solgel method. Orthodontic bonding agents containing BAG were prepared by mixing BAG with flowable resin. Transbond™ XT (TXT) and Charmfil™ Flow (CF) were used as controls. Ion release, cytotoxicity, antibacterial properties, the shear bond strength, and the adhesive remnant index were evaluated. To assess the remineralization properties of BAG, micro-computed tomography was performed after pH cycling. RESULTS: The BAG-containing bonding agents showed no noticeable cytotoxicity and suppressed bacterial growth. When these bonding agents were used, demineralization after pH cycling began approximately 200 to 300 µm away from the bracket. On the other hand, when CF and TXT were used, all surfaces that were not covered by the adhesive were demineralized after pH cycling. CONCLUSIONS: Our findings suggest that orthodontic bonding agents containing silver- or zinc-doped BAG have stronger antibacterial and remineralization effects compared with conventional orthodontic adhesives; thus, they are suitable for use in orthodontic practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...