Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 474: 134669, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805815

RESUMO

Nowadays, effluent treatment is a severe challenge mainly because of its complex composition, which includes oil, heavy metal ions, and dyes. Developing new intelligent membranes is one of the strategies to tackle these significant challenges in wastewater treatment. In this study, we fabricated asymmetric polyethylene glycol terephthalate (PET) membranes by grafting cross-linked poly (itaconic anhydride) (CL-PITA) nanoparticles onto the irradiated face. These nanoparticles were then functionalized with polyethyleneimine (PEI) and protonated with HCl to introduce numerous active electropositive amine groups. The fundamental purpose was to increase surface roughness, introduce numerous hydrophilic groups, and modify it to create a multi-functional PET membrane to separate complex environments. The promising results demonstrated that the protonated PET-g-ITA/DVB(10)-cat membrane exhibited excellent separation efficiencies (SE) for water/light oil, water/heavy oil and oil-in-water (O/W) emulsion. Compared to PET-g-ITA/DVB(0)-cat, it showed superior performance in SE for O/W emulsion and flux decay for water/light oil after 10 cycles. More interestingly, owing to numerous positively charged active amino groups and negativley charged carboxylate groups, the intelligent membrane exhibited a high removal rate of ca. 90 % for anionic dye (congo red) and heavy metals (Cu2+ and Co2+), showing great potential in complex water treatment environments.

2.
Acta Biomater ; 181: 249-262, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38704113

RESUMO

Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.


Assuntos
Antibacterianos , Quitosana , Poliuretanos , Poliuretanos/química , Poliuretanos/farmacologia , Quitosana/química , Quitosana/farmacologia , Coelhos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Hemostasia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Bandagens , Escherichia coli/efeitos dos fármacos , Masculino
3.
Colloids Surf B Biointerfaces ; 235: 113766, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278032

RESUMO

Bioadhesives are useful in surgery for hemostasis, tissue sealing and wound healing. However, most bioadhesives have limitations such as weak adhesion in wet conditions, insufficient sealing and poor clotting performance. Inspired by the adhesion mechanism of marine mussels, a novel bioadhesive (PCT) was developed by simply combining polyvinyl alcohol (PVA), collagen (COL) and tannic acid (TA) together. The results showed that the adhesion, sealing and blood coagulation properties boosted with the increase of tannic acid content in PCT. The wet shear adhesion strength of PCT-5 (the weight ratio of PVA:COL:TA=1:1:5) was 60.8 ± 0.6 kPa, the burst pressure was 213.7 ± 0.7 mmHg, and the blood clotting index was 39.3% ± 0.6%, respectively. In rat heart hemostasis tests, PCT-5 stopped bleeding in 23.7 ± 3.2 s and reduced bleeding loss to 83.0 ± 19.1 mg, which outperformed the benchmarks of commercial gauze (53.3 ± 8.7 s and 483.0 ± 15.0 mg) and 3 M adhesive (Type No.1469SB, 35.3 ± 5.0 s and 264.0 ± 14.2 mg). The as-prepared bioadhesive could provide significant benefits for tissue sealing and hemorrhage control along its low cost and facile preparation process.


Assuntos
Colágeno , Polifenóis , Álcool de Polivinil , Ratos , Animais , Hemostasia , Coagulação Sanguínea , Hemorragia , Aderências Teciduais , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...