Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 45: 108605, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426006

RESUMO

In this paper, we present a dataset to be used for the construction of the Voronoi diagram of 3D spherical balls (VD-B3). The dataset consists of sphere arrangements including general, anomaly, and extreme cases. The dataset also includes protein models downloaded from RCSB Protein Data Bank (PDB). The dataset can be used as a standard benchmark dataset to verify and validate the correctness, efficiency, and robustness of the construction algorithm. The dataset is simple and easy to understand. The details of the experiment and analysis based on this dataset are presented in the original research article: "Robust Construction of the Voronoi Diagram of Spherical Balls in the Three-Dimensional Space" which introduces the topology-oriented incremental algorithm for the construction that is thoroughly validated and compared with two implementations of the well known edge-tracing algorithm.

2.
Adv Sci (Weinh) ; 8(19): e2102043, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363349

RESUMO

The deficiency of antigen-specific T cells and the induction of various treatment-induced immunosuppressions still limits the clinical benefit of cancer immunotherapy. Although the chemo-immunotherapy adjuvanted with Toll-like receptor 7/8 agonist (TLR 7/8a) induces immunogenic cell death (ICD) and in situ vaccination effect, indoleamine 2,3-dioxygenase (IDO) is also significantly increased in the tumor microenvironment (TME) and tumor-draining lymph node (TDLN), which offsets the activated antitumor immunity. To address the treatment-induced immunosuppression, an assemblable immune modulating suspension (AIMS) containing ICD inducer (paclitaxel) and supra-adjuvant (immune booster; R848 as a TLR 7/8a, immunosuppression reliever; epacadostat as an IDO inhibitor) is suggested and shows that it increases cytotoxic T lymphocytes and relieves the IDO-related immunosuppression (TGF-ß, IL-10, myeloid-derived suppressor cells, and regulatory T cells) in both TME and TDLN, by the formation of in situ depot in tumor bed as well as by the efficient migration into TDLN. Local administration of AIMS increases T cell infiltration in both local and distant tumors and significantly inhibits the metastasis of tumors to the lung. Reverting treatment-induced secondary immunosuppression and reshaping "cold tumor" into "hot tumor" by AIMS also increases the response rate of immune checkpoint blockade therapy, which promises a new nanotheranostic strategy in cancer immunotherapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Terapia de Imunossupressão/métodos , Imunoterapia/métodos , Nanomedicina/métodos , Animais , Modelos Animais de Doenças , Imunoterapia/efeitos adversos
3.
IEEE Trans Vis Comput Graph ; 27(6): 2923-2940, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31841411

RESUMO

Voronoi diagrams are powerful for understanding spatial properties. However, few reports have been made for moving generators despite their important applications. We present a topology-oriented event-increment (TOI-E) algorithm for constructing a Voronoi diagram of moving circular disks in the plane over the time horizon [0, t∞). The proposed TOI-E algorithm computes the event history of the Voronoi diagram over the entire time horizon in O(kF logn + kC n logn) time with O(n logn) preprocessing time and O(n + kF + kC) memory for n disk generators, kF edge flips, and kC disk collisions during the time horizon. Given an event history, the Voronoi diagram of an arbitrary moment can be constructed in O(k∗ + n) time where k∗ represents the number of events in [0, t∗). An example of the collision avoidance problem among moving disks is given by predicting future conjunctions among the disks using the proposed algorithm. Dynamic Voronoi diagrams will be very useful as a platform for the planning and management of the traffics of unmanned vehicles such as cars on street, vessels on surface, drones and airplanes in air, and satellites in geospace.

4.
Nano Converg ; 7(1): 5, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32064551

RESUMO

Gold particles have been widely used in the treatment of prostate cancer due to their unique optical properties, such as their light-heat conversion in response to near-infrared radiation. Due to well-defined synthesis mechanisms and simple manufacturing methods, gold particles have been fabricated in various sizes and shapes. However, the low photothermal transduction efficiency in their present form is a major obstacle to practical and therapeutic uses of these particles. In the current work, we present a silica-coated gold nanoparticle cluster to address the therapeutic limit of single gold nanoparticles (AuNPs) and use its photothermal effect for treatment against PC-3, a typical prostate cancer. Due to its specific nanostructure, this gold nanocluster showed three times higher photothermal transduction efficiency than free single AuNPs. Moreover, while free single particles easily clump and lose optical properties, this silica-coated cluster form remained stable for a longer time in a given medium. In photothermal tests under near-infrared radiation, the excellent therapeutic efficacy of gold nanoclusters, referred to as AuNC@SiO2, was observed in a preclinical sample. Only the samples with both injected nanoclusters followed by photothermal treatment showed completely degraded tumors after 15 days. Due to the unique intrinsic biocompatibility and higher therapeutic effect of these silica-coated gold nanoclusters, they may contribute to enhancement of therapeutic efficacy against prostate cancer.

5.
Data Brief ; 27: 104784, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31799345

RESUMO

In this paper, we present a benchmark dataset which can be used to evaluate the algorithms to construct the convex hull of 2D disks. The dataset contains disk arrangements including general and extremely biased cases, which are generated by a C++ program. The dataset is related to an article: "QuickhullDisk: A Faster Convex Hull Algorithm for Disks" in which the QuickhullDisk algorithm is presented and compared to the incremental algorithm which was reported by Devillers and Golin in 1995 [1].

6.
Adv Mater ; 31(42): e1903242, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31490604

RESUMO

Current cancer immunotherapy based on immune checkpoint blockade (ICB) still suffers from low response rate and systemic toxicity. To overcome the limitation, a novel therapeutic platform that can revert nonimmunogenic tumors into immunogenic phenotype is highly required. Herein, a designer scaffold loaded with both immune nanoconverters encapsulated with resiquimod (iNCVs (R848)) and doxorubicin, which provides the polarization of immunosuppressive tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) into tumoricidal antigen-presenting cells (APCs), rather than depleting them, as well as in situ vaccination that can be generated in vivo without the need to previously analyze and sequence tumor antigens to favor neoantigen-specific T cell responses is suggested. Local and sustained release of iNCVs (R848) and doxorubicin from the designer scaffold not only reduces the frequency of immunosuppressive cells in tumors but also increases systemic antitumor immune response, while minimizing systemic toxicity. Reshaping the tumor microenivronment (TME) using the designer-scaffold-induced synergistic antitumor immunity with ICB effects and long-term central and effector memory T cell responses, results in the prevention of postsurgical tumor recurrence and metastasis. The spatiotemporal modulation of TMEs through designer scaffolds is expected to be a strategy to overcome the limitations and improve the therapeutic efficacy of current immunotherapies with minimized systemic toxicity.


Assuntos
Tolerância Imunológica/imunologia , Imunoterapia/métodos , Nanomedicina/métodos , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Imidazóis/química , Camundongos
7.
Nat Commun ; 10(1): 3745, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431623

RESUMO

The low response rate of current cancer immunotherapy suggests the presence of few antigen-specific T cells and a high number of immunosuppressive factors in tumor microenvironment (TME). Here, we develop a syringeable immunomodulatory multidomain nanogel (iGel) that overcomes the limitation by reprogramming of the pro-tumoral TME to antitumoral immune niches. Local and extended release of immunomodulatory drugs from iGel deplete immunosuppressive cells, while inducing immunogenic cell death and increased immunogenicity. When iGel is applied as a local postsurgical treatment, both systemic antitumor immunity and a memory T cell response are generated, and the recurrence and metastasis of tumors to lungs and other organs are significantly inhibited. Reshaping of the TME using iGel also reverts non-responding groups to checkpoint blockade therapies into responding groups. The iGel is expected as an immunotherapeutic platform that can reshape immunosuppressive TMEs and synergize cancer immunotherapy with checkpoint therapies, with minimized systemic toxicity.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Nanogéis/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Injeções Intralesionais , Lipossomos , Camundongos , Nanogéis/química , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/imunologia , Neoplasias/patologia , Seringas , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
8.
Adv Mater ; 30(18): e1706719, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29572968

RESUMO

The development of biomaterial-based immune niches that can modulate immunosuppressive factors in tumor microenvironment (TME) will be a key technology for improving current cancer immunotherapy. Here, implantable, engineered 3D porous scaffolds are designed to generate synergistic action between myeloid-derived suppressor cell (MDSC)-depleting agents, which can accommodate the establishment of a permissive immunogenic microenvironment to counteract tumor-induced immunosuppression, and cancer vaccines consisting of whole tumor lysates and nanogel-based adjuvants, which can generate tumor antigen-specific T cell responses. The local peritumoral implantation of the synthetic immune niche (termed immuneCare-DISC, iCD) as a postsurgical treatment in an advanced-stage primary 4T1 breast tumor model generates systemic antitumor immunity and prevents tumor recurrence at the surgical site as well as the migration of residual tumor cells into the lungs, resulting in 100% survival. These therapeutic outcomes are achieved through the inhibition of immunosuppressive MDSCs in tumors and spleens by releasing gemcitabine and recruitment/activation of dendritic cells, enhanced population of CD4+ and CD8+ T cells, and increased IFN-γ production by cancer vaccines from the iCD. This combined spatiotemporal modulation of tumor-derived immunosuppression and vaccine-induced immune stimulation through the iCD is expected to provide an immune niche for prevention of postoperative tumor recurrence and metastasis.


Assuntos
Imunoterapia , Linfócitos T CD8-Positivos , Vacinas Anticâncer , Humanos , Terapia de Imunossupressão , Microambiente Tumoral
9.
Int J Nanomedicine ; 12: 7501-7517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066896

RESUMO

In this study, we suggest a designer vaccine adjuvant that can mimic the drainage of pathogens into lymph nodes and activate innate immune response in lymph nodes. By the amination of multivalent carboxyl groups in poly-(γ-glutamic acid) (γ-PGA) nanomicelles, the size was reduced for rapid entry into lymphatic vessels, and the immunologically inert nanomicelles were turned into potential activators of inflammasomes. Aminated γ-PGA nanomicelles (aPNMs) induced NLRP3 inflammasome activation and the subsequent release of proinflammatory IL-1ß. The NLRP3-dependent inflammasome induction mechanism was confirmed through enzyme (cathepsin B and caspase-1) inhibitors and NLRP3 knockout mice model. After the aPNMs were combined with a clinically evaluated TLR3 agonist, polyinosinic-polycytidylic acid sodium salt (aPNM-IC), they triggered multiple arms of the innate immune response, including the secretion of pro-inflammatory cytokines by both inflammasomes and an inflammasome-independent pathway and the included type I interferons.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aminas/química , Imunidade Inata , Inflamassomos/metabolismo , Linfonodos/imunologia , Micelas , Nanopartículas/química , Vacinas/imunologia , Animais , Caspase 1/metabolismo , Feminino , Imunidade Inata/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Poli I-C/farmacologia , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química
10.
Int J Nanomedicine ; 11: 3753-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540289

RESUMO

Effective induction of an antigen-specific cytotoxic T lymphocyte (CTL) immune response is one of the key goals of cancer immunotherapy. We report the design and fabrication of polyethylenimine (PEI)-coated polymer nanoparticles (NPs) as efficient antigen-delivery carriers that can induce antigen cross-presentation and a strong CTL response. After synthesis of poly(d,l-lactide-co-glycolide) (PLGA) NPs containing ovalbumin (OVA) by the double-emulsion solvent-evaporation method, cationic-charged PLGA NPs were generated by coating them with PEI. In a methyl tetrazolium salt assay, no discernible cytotoxic effect of PEI-coated PLGA (OVA) NPs was observed. The capacity and mechanism of PEI-coated PLGA (OVA) NPs for antigen delivery and cross-presentation on dendritic cells (DCs) were determined by fluorescence microscopy and flow cytometry. PEI-coated PLGA (OVA) NPs were internalized efficiently via phagocytosis or macropinocytosis in DCs and induced efficient cross-presentation of the antigen on MHC class I molecules via both endosome escape and a lysosomal processing mechanism. The DCs treated with PEI-coated PLGA (OVA) NPs induced a release of IL-2 cytokine from OVA-specific CD8-OVA1.3 T cells more efficiently than DCs treated with PLGA (OVA) NPs. Therefore, the PEI-coated PLGA (OVA) NPs can induce antigen cross-presentation and are expected to be used for induction of a strong CTL immune response and for efficient anticancer immunotherapy.


Assuntos
Antígenos/imunologia , Apresentação Cruzada , Ácido Láctico/química , Nanopartículas/química , Ovalbumina/imunologia , Polietilenoimina/química , Ácido Poliglicólico/química , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos/administração & dosagem , Diferenciação Celular , Sobrevivência Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Endocitose , Feminino , Espaço Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...