Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5395, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926423

RESUMO

This report presents liquid metal-based infrared-modulating materials and systems with multiple modes to regulate the infrared reflection. Inspired by the brightness adjustment in chameleon skin, shape-morphing liquid metal droplets in silicone elastomer (Ecoflex) matrix are used to resemble the dispersed "melanophores". In the system, Ecoflex acts as hormone to drive the deformation of liquid metal droplets. Both total and specular reflectance-based infrared camouflage are achieved. Typically, the total and specular reflectances show change of ~44.8% and 61.2%, respectively, which are among the highest values reported for infrared camouflage. Programmable infrared encoding/decoding is explored by adjusting the concentration of liquid metal and applying areal strains. By introducing alloys with different melting points, temperature-dependent infrared painting/writing can be achieved. Furthermore, the multi-layered structure of infrared-modulating system is designed, where the liquid metal-based infrared modulating materials are integrated with an evaporated metallic film for enhanced performance of such system.

2.
Nat Commun ; 15(1): 5084, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877007

RESUMO

Corrosion of electrocatalysts during electrochemical operations, such as low potential - high potential cyclic swapping, can cause significant performance degradation. However, the electrochemical corrosion dynamics, including structural changes, especially site and composition specific ones, and their correlation with electrochemical processes are hidden due to the insufficient spatial-temporal resolution characterization methods. Using electrochemical liquid cell transmission electron microscopy, we visualize the electrochemical corrosion of Pd@Pt core-shell octahedral nanoparticles towards a Pt nanoframe. The potential-dependent surface reconstruction during multiple continuous in-situ cyclic voltammetry with clear redox peaks is captured, revealing an etching and deposition process of Pd that results in internal Pd atoms being relocated to external surface, followed by subsequent preferential corrosion of Pt (111) terraces rather than the edges or corners, simultaneously capturing the structure evolution also allows to attribute the site-specific Pt and Pd atomic dynamics to individual oxidation and reduction events. This work provides profound insights into the surface reconstruction of nanoparticles during complex electrochemical processes.

3.
Adv Sci (Weinh) ; : e2400969, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774947

RESUMO

Novel active DNA transposons, such as Spy transposons from the PHIS superfamily, are identified through bioinformatics in this study. The native transposases cgSpy and cvSpy displayed transposition activities of approximately 85% and 35% compared to the hyperactive piggyBac transposase (hyPB). The cgSpy transposon showed unique characteristics, including a lack of overproduction inhibition and reduced efficiency for insertion sizes between 3.1 to 8.5 kb. Integration preferences of cgSpy are found in genes and regulatory regions, making it suitable for genetic manipulation. Evaluation in T-cell engineering demonstrated that cgSpy-mediated chimeric antigen receptor (CAR) modification is comparable to the PB system, indicating its potential utility in cell therapy. This study unveils the promising application of the active native transposase, Spy, from Colletes gigas, as a valuable tool for genetic engineering, particularly in T-cell manipulation.

4.
Animals (Basel) ; 14(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791643

RESUMO

This study aimed to investigate the evolutionary profile (including diversity, activity, and abundance) of retrotransposons (RTNs) with long terminal repeats (LTRs) in ten species of Tetraodontiformes. These species, Arothron firmamentum, Lagocephalus sceleratus, Pao palembangensis, Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, Takifugu rubripes, Tetraodon nigroviridis, Mola mola, and Thamnaconus septentrionalis, are known for having the smallest genomes among vertebrates. Data mining revealed a high diversity and wide distribution of LTR retrotransposons (LTR-RTNs) in these compact vertebrate genomes, with varying abundances among species. A total of 819 full-length LTR-RTN sequences were identified across these genomes, categorized into nine families belonging to four different superfamilies: ERV (Orthoretrovirinae and Epsilon retrovirus), Copia, BEL-PAO, and Gypsy (Gmr, Mag, V-clade, CsRN1, and Barthez). The Gypsy superfamily exhibited the highest diversity. LTR family distribution varied among species, with Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, and Takifugu rubripes having the highest richness of LTR families and sequences. Additionally, evidence of recent invasions was observed in specific tetraodontiform genomes, suggesting potential transposition activity. This study provides insights into the evolution of LTR retrotransposons in Tetraodontiformes, enhancing our understanding of their impact on the structure and evolution of host genomes.

5.
DNA Res ; 31(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447059

RESUMO

Transposable elements (TEs) mobility is capable of generating a large number of structural variants (SVs), which can have considerable potential as molecular markers for genetic analysis and molecular breeding in livestock. Our results showed that the pig genome contains mainly TE-SVs generated by short interspersed nuclear elements (51,873/76.49%), followed by long interspersed nuclear elements (11,131/16.41%), and more than 84% of the common TE-SVs (Minor allele frequency, MAF > 0.10) were validated to be polymorphic. Subsequently, we utilized the identified TE-SVs to gain insights into the population structure, resulting in clear differentiation among the three pig groups and facilitating the identification of relationships within Chinese local pig breeds. In addition, we investigated the frequencies of TEs in the gene coding regions of different pig groups and annotated the respective TE types, related genes, and functional pathways. Through genome-wide comparisons of Large White pigs and Chinese local pigs utilizing the Beijing Black pigs, we identified TE-mediated SVs associated with quantitative trait loci and observed that they were mainly involved in carcass traits and meat quality traits. Lastly, we present the first documented evidence of TE transduction in the pig genome.


Assuntos
Elementos de DNA Transponíveis , Polimorfismo Genético , Animais , Suínos/genética , Locos de Características Quantitativas , Elementos Nucleotídeos Curtos e Dispersos , Genética Populacional
6.
Viruses ; 16(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38543763

RESUMO

The interest in endogenous retroviruses (ERVs) has been fueled by their impact on the evolution of the host genome. In this study, we used multiple pipelines to conduct a de novo exploration and annotation of ERVs in 13 species of the Caprinae subfamily. Through analyses of sequence identity, structural organization, and phylogeny, we defined 28 ERV groups within Caprinae, including 19 gamma retrovirus groups and 9 beta retrovirus groups. Notably, we identified four recent and potentially active groups prevalent in the Caprinae genomes. Additionally, our investigation revealed that most long noncoding genes (lncRNA) and protein-coding genes (PC) contain ERV-derived sequences. Specifically, we observed that ERV-derived sequences were present in approximately 75% of protein-coding genes and 81% of lncRNA genes in sheep. Similarly, in goats, ERV-derived sequences were found in approximately 74% of protein-coding genes and 75% of lncRNA genes. Our findings lead to the conclusion that the majority of ERVs in the Caprinae genomes can be categorized as fossils, representing remnants of past retroviral infections that have become permanently integrated into the genomes. Nevertheless, the identification of the Cap_ERV_20, Cap_ERV_21, Cap_ERV_24, and Cap_ERV_25 groups indicates the presence of relatively recent and potentially active ERVs in these genomes. These particular groups may contribute to the ongoing evolution of the Caprinae genome. The identification of putatively active ERVs in the Caprinae genomes raises the possibility of harnessing them for future genetic marker development.


Assuntos
Retrovirus Endógenos , RNA Longo não Codificante , Infecções por Retroviridae , Animais , Ovinos , Retrovirus Endógenos/genética , RNA Longo não Codificante/genética , Evolução Molecular , Filogenia
7.
ACS Nano ; 18(11): 7877-7889, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450636

RESUMO

The octopus, as one of the most famous celebrities in bionics, has provided various inspirations for camouflage materials, soft-bodied robots, and flexible grabbers. The miniaturization of such structures will help the development of microrobots, microdelivery of drugs, and surface coating. With the lack of relevant effective preparation approaches, however, the generation of such octopus-like structures with a size of ∼1 µm or below is challenging. Here, we develop an approach based on laser-microdroplet interaction for generating an octopus-like structure with a size of ∼1 µm. The developed approach uses laser-microdroplet interaction to provide a large driving force of ∼107 Pa at a confined space (<1 µm), locally crumpling the precursor in the microdroplet. The locally crumpled particles possess both crumpled and uncrumpled structures that resemble an octopus's head and soft body. In the adhesion test, the octopus-like particles exhibit high adhesive properties in air, in water, and on a flexible substrate. In the electrochemical test, the octopus-like particles on flexible electrodes show good electrochemical and adhesive properties under hundreds of bending cycles. Benefiting from the combination of crumpled and uncrumpled morphologies, the created particles with octopus-like microstructure are demonstrated to possess comprehensive performance, exhibiting wide application potentials in the fields of microswimmers, surface coatings, and electrochemistry. Additionally, the method developed in this work has the advantages of concentrated energy in a confined space, displaying prospective potentials in micro- and nanoprocessing.

8.
Phys Rev Lett ; 132(10): 104001, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518322

RESUMO

Phototaxis phenomenon is fundamental and critical for optical manipulation of micro-objects. Here, we report the size-dependent negative or positive phototaxis behaviors for microdroplets containing interfacial energy absorber flying in a laser. The critical diameters for such negative-to-positive turnover are studied through both experiments and simulation with different liquids and absorbers, which establishes the mechanism and reveals the role of both the liquid and the absorber inside the microdroplets. This study offers new insight for the manipulation of the phototaxis behavior of micro-objects, showing potential applications in optical trapping and transporting systems that involve light-microdroplet interactions.

9.
Animals (Basel) ; 14(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396589

RESUMO

Endogenous retroviruses (ERVs) are one of the superfamilies of long terminal repeat retrotransposons (LTRs) in mice and humans. Approximately 8% of the pig genome is composed of sequences derived from LTRs. While the majority of ERVs in pigs have decayed, a small number of full-length copies can still mobilize within the genome. This study investigated the unexplored retroviral insertion polymorphisms (RIPs) generated by the mobilization of full-length ERVs (Fl-ERVs), and evaluated their impact on phenotypic variation to gain insights into the biological role of Fl-ERVs in pigs. Overall, 39 RIPs (insertions or deletions relative to the pig reference genome) generated by Fl-ERVs were predicted by comparative genomic analysis, and 18 of them were confirmed by PCR detection. Four RIP sites (D5, D14, D15, and D18) were further evaluated by population analysis, and all of them displayed polymorphisms in multiple breeds. The RIP site of ERV-D14, which is a Fl-ERV inserted in the STAB2-like gene, was further confirmed by sequencing. Population analysis of the polymorphic site of ERV-D14 reveals that it presents moderate polymorphism information in the Large White pig breed, and the association analysis reveals that the RIP of ERV-D14 is associated with age variations at 30 kg body weight (p < 0.05) and 100 kg body weight (p < 0.01) in the population of Large White pigs (N = 480). Furthermore, the ERV-D14 RIP is associated with changes in the expression of the target gene STAB2-like in the liver, backfat, and leaf fat in Sushan pigs. These data suggest that some Fl-ERVs are still mobilizing in the pig's genome, and contribute to genomic and phenotypic variations.

10.
Nano Lett ; 24(7): 2157-2164, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319745

RESUMO

Carbon support is essential for electrocatalysis, but limitations remain, as carbon corrosion can lead to electrocatalyst degradation and affect the long-term durability of electrocatalysts. Here, we studied the corrosion dynamics of carbon nanotubes (CNTs) and Vulcan carbon (VC) together with platinum (Pt) nanoparticles in real time by liquid cell (LC) transmission electron microscopy (TEM). The results showed that CNTs with a high degree of graphitization exhibited higher corrosion resistance compared to VC. Furthermore, we observed that the main degradation path of Pt nanoparticles in Pt/CNTs was ripening, while in Pt/VC, it was aggregation and coalescence, which was dominated by the interactions between Pt nanoparticles and different hybridization of carbon supports. Finally, we performed an ex situ CV stability test to confirm the conclusions obtained from in situ experiments. This work provides deep insights into the corrosion mechanism of carbon-supported electrocatalysts to optimize the design of electrocatalysts with a higher durability.

11.
Adv Sci (Weinh) ; 11(12): e2307020, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239054

RESUMO

Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.


Assuntos
Convecção , Temperatura Alta , Humanos , Raios Infravermelhos
12.
Chem Commun (Camb) ; 59(92): 13731-13734, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37909273

RESUMO

A nitrogen-doped carbon-supported CuNi bimetallic nanocluster catalyst (CuNi-NC) was first synthesized via a facile ZIF-derived method. With a synergistic effect between Cu and Ni, the catalyst exhibited a maximum FECO of 96.3%. FECO is higher than 90% in a broad potential range of 600 mV, which was ascribed to the controllable pore size distribution. Density functional theory further demonstrated the preferred formation of *COOH in the catalytic process.

13.
Genes (Basel) ; 14(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37895260

RESUMO

Type-V-F Cas12f proteins, also known as Cas14, have drawn significant interest within the diverse CRISPR-Cas nucleases due to their compact size. This study involves analyzing and comparing Cas14-homology proteins in prokaryotic genomes through mining, sequence comparisons, a phylogenetic analysis, and an array/repeat analysis. In our analysis, we identified and mined a total of 93 Cas14-homology proteins that ranged in size from 344 aa to 843 aa. The majority of the Cas14-homology proteins discovered in this analysis were found within the Firmicutes group, which contained 37 species, representing 42% of all the Cas14-homology proteins identified. In archaea, the DPANN group had the highest number of species containing Cas14-homology proteins, a total of three species. The phylogenetic analysis results demonstrate the division of Cas14-homology proteins into three clades: Cas14-A, Cas14-B, and Cas14-U. Extensive similarity was observed at the C-terminal end (CTD) through a domain comparison of the three clades, suggesting a potentially shared mechanism of action due to the presence of cutting domains in that region. Additionally, a sequence similarity analysis of all the identified Cas14 sequences indicated a low level of similarity (18%) between the protein variants. The analysis of repeats/arrays in the extended nucleotide sequences of the identified Cas14-homology proteins highlighted that 44 out of the total mined proteins possessed CRISPR-associated repeats, with 20 of them being specific to Cas14. Our study contributes to the increased understanding of Cas14 proteins across prokaryotic genomes. These homologous proteins have the potential for future applications in the mining and engineering of Cas14 proteins.


Assuntos
Archaea , Proteínas Associadas a CRISPR , Archaea/genética , Filogenia , Bactérias/genética
14.
Mol Phylogenet Evol ; 188: 107906, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586577

RESUMO

DNA transposons play a crucial role in determining the size and structure of eukaryotic genomes. In this study, a new family of IS630-Tc1-mariner (ITm) DNA transposons, named Hiker (HK), was identified. HK is characterized by a DD35E catalytic domain and is distinct from all previously known families of the ITm group. Phylogenetic analyses showed that DD35E/Hiker forms a monophyletic clade with DD34E/Gambol, indicating that they may represent a separate superfamily of ITm. A total of 178 Hiker species were identified, with 170 found mainly in Actinopterygii, one in Chondrichthyes, six in Anura and one in Mollusca. Gambol (GM), on the other hand, are found in invertebrates, with 18 in Arthropoda and one in Platyhelminthes. Hiker transposons have a total length ranging from 2.14 to 3.67 kb and contain a single open reading frame that encodes a protein of approximately 370 amino acids (range 311-413 aa). They are flanked by short terminal inverted repeats (TIRs) of 16-30 base pairs and two base pair (TA) target-site duplications. In contrast, most transposons of the Gambol family have a total length of 1.35-5.96 kb, encode a transposase protein of approximately 350 amino acids (range 306-374 aa), and are flanked by TIRs that range from 32 to 1097 bp in length. Both Hiker and Gambol transposases have several conserved motifs, including helix-turn-helix (HTH) motifs and a DDE domain. Our study observed multiple amplification waves and repeated horizontal transfer (HT) events of HK transposons in vertebrate genomes, indicating their role in diversifying and shaping the genomes of Actinopterygii, Chondrichthyes, and Anura. Conversely, GM transposons showed few Horizontal transfer events. According to cell-based transposition assays, most HK transposons are likely inactive due to the truncated DNA binding domains of their transposases. We present an updated classification of the ITm group based on these findings, which will enhance the understanding of both the evolution of ITm transposons and that of their hosts.


Assuntos
Elementos de DNA Transponíveis , Transposases , Animais , Elementos de DNA Transponíveis/genética , Filogenia , Transposases/genética , Células Eucarióticas/metabolismo , Moluscos/genética
15.
ACS Nano ; 17(16): 16123-16134, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565780

RESUMO

In this paper, multiresponsive actuators based on asymmetric design of graphene-conjugated poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) gradient films have been developed by a simple drop casting method. The biomimetic actuation is attributed to the hygroscopic expansion property of PEDOT:PSS and the gradient distribution of graphene sheets within the film, which resembles the hierarchical swelling tissues of some plants in nature. Graphene-conjugated PEDOT:PSS (GCP) actuators exhibit reversible bending behavior under multistimuli such as moisture, organic vapor, electrothermal, and photothermal heating. Noticeably, the bending curvature reaches 2.15 cm-1 under applied voltage as low as 1.5 V owing to the high electrical conductivity of GCP actuator. To mimic the motions of nyctinastic plants, a GCP artificial flower that spreads its petals under sunlight illumination has been fabricated. GCP actuators have been also demonstrated as intelligent light-controlled switches for light-emitting diodes and smart curtains for thermal management. Not only do the GCP gradient films exhibit potential applications in flexible electronics and energy harvesting/storage devices but also the facile fabrication of multiresponsive GCP actuators may shed light on the development of soft robotics, artificial muscles, wearable electronics, and smart sensors.

16.
Animals (Basel) ; 13(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37508132

RESUMO

PPARs are essential regulators of mammalian fatty acid and lipid metabolism. Although the effects of genetic variations, including single nucleotide polymorphisms (SNPs) in PPARs genes on the phenotype of domestic animals have been investigated, there is limited information on the impact of retrotransposon insertion polymorphisms (RIPs). In this study, a combined comparative genome and polymerase chain reaction (PCR) was used to excavate the RIPs in porcine PPARs. We also investigated the potential effects of retrotransposon insertion on phenotype and expression patterns. This study identified the two RIPs in PPARs genes, namely an ERV in intron 1 of PPARα and a combined retrotransposon in intron 2 of PPARγ, designated as PPARα-ERV-RIP and PPARγ-COM-RIP, respectively. These RIPs exhibited different distribution patterns among Chinese indigenous breeds and Western commercial breeds. Individuals with the PPARα-ERV-RIP+/+ genotype (+/+ indicated homozygous with insertion) among Large White pigs had significantly higher (p < 0.05) corrected backfat thickness compared to those with the other two genotypes. Similarly, those with the PPARγ-COM-RIP-/- genotype had significantly higher (p < 0.05) corrected backfat thickness than those with the other two genotypes in Large White pigs. Moreover, in 30-day-old Sujiang piglets, the PPARγ gene expression in the backfat of those with the PPARγ-COM-RIP-/- genotype (-/- indicated homozygous without insertion) was significantly greater (p < 0.01) than those with other genotypes. The dual luciferase reporter gene assay demonstrated that the combined retrotransposon insertion significantly reduced the activity of the MYC promoter in both C2C12 and 3T3-L1 cells (p < 0.01). Therefore, the combined retrotransposon insertion could function as a repressor to decrease the expression of PPARγ, making PPARγ-COM-RIP a valuable molecular marker for assisted selection of backfat thickness in pig breeding.

17.
Genes (Basel) ; 14(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37510284

RESUMO

Diverse Tc1/mariner elements with the DD37E signature have been detected. However, their evolutionary relationship and profiles are largely unknown. Using bioinformatics methods, we defined the evolution profile of a Tc1/Mariner family, which harbors the catalytic domain with the DD37E signature, and renamed it DD37E/Mosquito (MS). MS transposons form a separate monophyletic clade in the phylogenetic tree, distinct from the other two groups of elements with the DD37E signature, DD37E/L18 and DD37E/TRT (transposon related to Tc1), and represent a very different taxonomic distribution from that of DD37E/TRT. MS is only detected in invertebrate and is mostly present in Arthropoda, as well as in Cnidaria, Ctenophora, Mollusca, Nematoda, and Platyhelminthes, with a total length of about 1.3 kb, containing an open reading frame (ORF) encoding about 340 amino acids transposases, with a conserved DD37E catalytic domain. The terminal inverted repeat (TIR) lengths range from 19 bp to 203 bp, and the target site duplication (TSD) is TA. We also identified few occurrences of MS horizontal transfers (HT) across lineages of diptera. In this paper, the distribution characteristics, structural characteristics, phylogenetic evolution, and horizontal transfer of the MS family are fully analyzed, which is conducive to supplementing and improving the Tc1/Mariner superfamily and excavating active transposons.


Assuntos
Elementos de DNA Transponíveis , Animais , Elementos de DNA Transponíveis/genética , Filogenia , Artrópodes/genética , Cnidários/genética , Ctenóforos/genética , Moluscos/genética , Nematoides/genética , Platelmintos/genética
18.
Animals (Basel) ; 13(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370452

RESUMO

Transposons are genetic elements that are present in mammalian genomes and occupy a large proportion of the pig genome, with retrotransposons being the most abundant. In a previous study, it was found that a SINE retrotransposon was inserted in the 1st intron of the CA5B gene in pigs, and the present study aimed to investigate the SINE insertion polymorphism in this gene in different pig breeds. Polymerase chain reaction (PCR) was used to confirm the polymorphism in 11 pig breeds and wild boars), and it was found that there was moderate polymorphism information content in 9 of the breeds. Further investigation in cell experiments revealed that the 330 bp SINE insertion in the RIP-CA5B site promoted expression activity in the weak promoter region of this site. Additionally, an enhancer verification vector experiment showed that the 330 bp SINE sequence acted as an enhancer on the core promoter region upstream of the CA5B gene region. The expression of CA5B in adipose tissue (back fat and leaf fat) in individuals with the (SINE+/+) genotype was significantly higher than those with (SINE+/-) and (SINE-/-) genotypes. The association analysis revealed that the (SINE+/+) genotype was significantly associated with a higher back fat thickness than the (SINE-/-) genotype. Moreover, it was observed that the insertion of SINE at the RIP-CA5B site carried ATTT repeats, and three types of (ATTT) repeats were identified among different individuals/breeds (i.e., (ATTT)4, (ATTT)6 and (ATTT)9). Overall, the study provides insights into the genetic basis of adipose tissue development in pigs and highlights the role of a SINE insertion in the CA5B gene in this process.

19.
PLoS One ; 18(5): e0286391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253050

RESUMO

General anesthetics can cause neurological damage and long-term behavioral/cognitive impairment during fetal and early postnatal life. However, the adverse influence on embryo development induced by propofol is unclear. We used embryonic zebrafish to explore the effects of propofol on embryonic and larval growth and development, and the related apoptotic mechanism. Zebrafish embryos were immersed in propofol (1, 2, 3, 4, and 5 µg/ml) dissolved in E3 medium from 6 to 48 hours post fertilization (hpf). The survival rate, locomotion, heart rate, hatchability, deformity rate, and body length were analyzed at defined stages. Terminal deoxynucleotidyl transferase nick-end-labeling was used to detect zebrafish embryo apoptosis, and the expression levels of apoptosis-related genes were determined using quantitative real-time reverse transcription PCR and whole-mount in situ hybridization. Larvae at 48 hpf were anesthetized by immersion in E3 culture medium containing 2 µg/ml propofol, the reasonable anesthetic concentration for zebrafish embryos, which caused significant caudal fin dysplasia, light pigmentation, edema, hemorrhage, and spinal deformity, and decreased the hatchability, body length, and heart rate. The numbers of apoptotic cells in propofol-treated 12, 48 and 72 hpf embryos increased significantly, and the mRNA expression levels of intrinsic apoptosis pathway-related casp3a, casp3b, casp9, and baxb genes were upregulated, mainly in the head and tail. Propofol decreased apoptosis in the head and back of 24 hpf zebrafish, which was consistent with the mRNA expression analysis. Our findings demonstrated that zebrafish embryos and larvae exposed to propofol experienced developmental toxicity, which correlated with the intrinsic apoptosis pathway with casp3a, casp3b, casp9, and baxb as the key genes.


Assuntos
Propofol , Peixe-Zebra , Animais , Peixe-Zebra/genética , Propofol/toxicidade , Embrião não Mamífero/metabolismo , Apoptose , RNA Mensageiro/metabolismo , Larva/metabolismo
20.
Chem Rev ; 123(11): 7081-7118, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37162476

RESUMO

The regulation and utilization of thermal energy is increasingly important in modern society due to the growing demand for heating and cooling in applications ranging from buildings, to cooling high power electronics, and from personal thermal management to the pursuit of renewable thermal energy technologies. Over billions of years of natural selection, biological organisms have evolved unique mechanisms and delicate structures for efficient and intelligent regulation and utilization of thermal energy. These structures also provide inspiration for developing advanced thermal engineering materials and systems with extraordinary performance. In this review, we summarize research progress in biological and bioinspired thermal energy materials and technologies, including thermal regulation through insulation, radiative cooling, evaporative cooling and camouflage, and conversion and utilization of thermal energy from solar thermal radiation and biological bodies for vapor/electricity generation, temperature/infrared sensing, and communication. Emphasis is placed on introducing bioinspired principles, identifying key bioinspired structures, revealing structure-property-function relationships, and discussing promising and implementable bioinspired strategies. We also present perspectives on current challenges and outlook for future research directions. We anticipate that this review will stimulate further in-depth research in biological and bioinspired thermal energy materials and technologies, and help accelerate the growth of this emerging field.


Assuntos
Materiais Biomiméticos , Eletrônica , Gases , Calefação , Energia Renovável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...