Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555777

RESUMO

Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat resistance of lilies. LlERF110, an important transcription factor in the ethylene signaling pathway, was found in the high-temperature transcriptome. The coding region of LlERF110 (969 bp) encodes 322 amino acids and LlERF110 contains an AP2/ERF typical domain belonging to the ERF subfamily group X. LlERF110 was induced by ethylene and was expressed constitutively in all tissues. LlERF110 is localized in the nucleus and has transactivation activity. Virus-induced gene silencing of LlERF110 in lilies reduced the basal thermotolerance phenotypes and significantly decreased the expression of genes involved in the HSF-HSP pathway, such as LlHsfA2, LlHsfA3A, and LlHsfA5, which may activate other heat stress response genes; and LlHsp17.6 and LlHsp22, which may protect proteins under heat stress. LlERF110 could directly bind to the promoter of LlHsfA3A and activate its expression according to the yeast one hybrid and dual-luciferase reporter assays. LlERF110 interacts with LlHsfA2 in the nucleus according to BiFC and the yeast two-hybrid assays. In conclusion, these results indicate that LlERF110 plays an important role in the basal thermotolerance of lilies via regulation of the HSF-HSP pathway, which could be the junction of the heat stress response pathway and the ethylene signaling pathway.


Assuntos
Lilium , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
2.
BMC Plant Biol ; 22(1): 202, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439940

RESUMO

BACKGROUND: High temperature seriously limits the annual production of fresh cut lilies, which is one of the four major cut flowers in the global cut flower market. There were few transcriptomes focused on the gene expression of lilies under heat stress. In order to reveal the potential heat response patterns in bulbous plants and provide important genes for further genetic engineering techniques to improve thermotolerance of lily, RNA sequencing of lilies under heat treatments were conducted. RESULTS: In this study, seedlings of Lilium longiflorum 'White Heaven' were heat-treated at 37 °C for different lengths of time (0 h, 0.5 h, 1 h, 3 h, 6 h, and 12 h with a 12 h-light/12 h-dark cycle). The leaves of these lily seedlings were immediately collected after heat treatments and quickly put into liquid nitrogen for RNA sequencing. 109,364,486-171,487,430 clean reads and 55,044 unigenes including 21,608 differentially expressed genes (DEGs) (fold change ≥2) were obtained after heat treatment. The number of DEGs increased sharply during the heat treatments of 0.5 h-1 h and 1 h-3 h compared to that of other periods. Genes of the heat stress transcription factor (HSF) family and the small heat shock proteins (small HSPs, also known as HSP20) family responded to heat stress early and quickly. Compared to that of the calcium signal and hormone pathways, DEGs of the HSF-HSP pathway and reactive oxygen species (ROS) pathway were significantly and highly induced. Moreover, they had the similar expression pattern in response to heat stress. Small HSPs family genes were the major components in the 50 most highly induced genes at each heat stress treatment and involved in ROS pathway in the rapid response to heat stress. Furthermore, the barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of LlHsfA2 caused a significantly reduced thermotolerance phenotype in Lilium longiflorum 'White Heaven', meanwhile decreasing the expression of small HSPs family genes and increasing the ROS scavenging enzyme ascorbate peroxidase (APX) genes, indicating the potential interplay between these two pathways. CONCLUSIONS: Based on our transcriptomic analysis, we provide a new finding that small HSPs play important roles in crosstalk between HSF-HSP and ROS pathways in heat stress response of lily, which also supply the groundwork for understanding the mechanism of heat stress in bulbous plants.


Assuntos
Lilium , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Lilium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Transcriptoma
3.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009000

RESUMO

Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies.


Assuntos
Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Lilium/fisiologia , Termotolerância , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Peróxido de Hidrogênio/metabolismo , Fenótipo , Filogenia , Fenômenos Fisiológicos Vegetais , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência , Termotolerância/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA